Name:

Requirements:
- This exam should be completed in 45 minutes.
- Books, notes, calculators, computers, discussion and collaboration are not allowed.
- Do all of your work in this exam booklet.
- Simplify all answers as far as possible.
- Solutions without proper justification will receive no credit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (15’)
Compute the following integral
\[
\int \tan^2 x \sec^4 x \, dx. \tag{1}
\]
Problem 2. (15’)
Solve the differential equation

\[y'(x) = y^2 \cos x. \] \hspace{1cm} (2)
Problem 3. (20’)
Find an equation of the tangent line to the parametric curve

\[x = t \cos t, \quad y = t \sin t, \quad (3) \]

at the point \(t = \pi/2 \).
Problem 4. (25’)
Compute the following integral
\[\int \frac{e^{2x}}{e^{2x} - e^x - 2} \, dx. \]
Problem 5 (25’)

Kirchhoff’s law of circuits says $L \frac{dI(t)}{dt} + RI(t) = E(t)$. Suppose in a circuit the battery produces a variable voltage of $E(t) = t$, the resistance is $R = 12$ and the inductance is $L = 4$. Suppose the initial current is $I(0) = 0$. Find the current $I(t)$ as a function of t.