Math 109 HW8

Fall 2018

1. Use the comparison test to determine whether the integral

$$\int_{0}^{\pi/2} \frac{\sin^2 x}{x^{\frac{1}{4}}} dx$$

is convergent or divergent.

- 2. Determine whether each integral is convergent or divergent.
- a) $\int_{2}^{3} \frac{1}{x^{2} x 2} dx.$ b) $\int_{1}^{\infty} \frac{1}{x^{2} - 4x + 4} dx.$
- c) $\int_0^4 \frac{1}{\sqrt[3]{x-1}} dx$.

3. Find a formula for the general term a_n of the sequence $\{2, -4, 6, -8, 10, \dots\}$, assuming that the pattern of the first few terms continues.

4. Find a formula for the general term a_n of the sequence $\{4, -1, \frac{1}{4}, -\frac{1}{16}, \frac{1}{64}, \cdots\}$, assuming that the pattern of the first few terms continues.

5. Write down an inductive formula for the general term a_n of the sequence $\{1, 3, 4, 7, 11, 18, 29, \dots\}$, assuming that the pattern of the first few terms continues.

- 6. Determine if the sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit.
 - (a) $a_n = \frac{n^3}{2n^3 n}$.
 - (b) $a_1 = 4, a_{n+1} = a_n + 3$ for $n \ge 2$.
 - (c) $a_n = \sqrt[n]{e^{3n+4}}$.
- 7. Determine if the sequence $\{a_n\}_{n=1}^{\infty}$ converges or diverges. If it converges, find the limit.
 - (a) $a_n = \frac{\tan^{-1} n}{n}$.

(b)
$$a_n = \frac{\sin \frac{n}{2}}{n}$$
.

(c) $a_n = \sqrt[3]{\frac{(2n-1)!}{(2n+1)!}}$. Recall the factorial of a positive integer k is defined as $k! = k \cdot (k-1) \cdot (k-2) \cdots 1$.