List of tests we've learned:

- 1. Divergence test
- 2. Integral test
- 3. Comparison test (including limit comparison test and the modified limit comparison test)
- 4. Alternating series test
- 5. Absolute convergence test
- 6. Ratio test
- 7. Root test

Summary of Convergence Tests for Series

Test	Series	Convergence or Divergence	Comments
n^{th} term test (or the zero test)	$\sum a_n$	Diverges if $\lim_{n\to\infty} a_n \neq 0$	Inconclusive if $\lim_{n\to\infty} a_n = 0$.
Geometric series	$\sum_{n=0}^{\infty} ax^n \left(\operatorname{or} \sum_{n=1}^{\infty} ax^{n-1} \right)$	Converges to $\frac{a}{1-x}$ only if $ x < 1$ Diverges if $ x \ge 1$	Useful for comparison tests if the n^{th} term a_n of a series is similar to ax^n .
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	Converges if $p > 1$ Diverges if $p \le 1$	Useful for comparison tests if the n^{th} term a_n of a series is similar to $\frac{1}{n^p}$.
Integral	$\sum_{n=c}^{\infty} a_n (c \ge 0)$ $a_n = f(n) \text{ for all } n$	Converges if $\int_{c}^{\infty} f(x) dx$ converges Diverges if $\int_{c}^{\infty} f(x) dx$ diverges	The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing and readily integrable for $x \ge c$.
Comparison	$\sum a_n \text{ and } \sum b_n$ with $0 \le a_n \le b_n$ for all n	$\sum b_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$ $\sum a_n \text{ diverges} \Longrightarrow \sum b_n \text{ diverges}$	The comparison series $\sum b_n$ is often a geometric series or a p -series.
Limit Comparison*	$\sum a_n \text{ and } \sum b_n$ with $a_n, b_n > 0$ for all n and $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$	$\sum b_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$ $\sum b_n \text{ diverges} \Longrightarrow \sum a_n \text{ diverges}$	The comparison series $\sum b_n$ is often a geometric series or a p -series. To find b_n consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum a_n \text{ with } \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = L$	Converges (absolutely) if $L < 1$ Diverges if $L > 1$ or if L is infinite	Inconclusive if $L = 1$. Useful if a_n involves factorials or n^{th} powers.
Root*	$\sum a_n \text{ with } \lim_{n \to \infty} \sqrt[n]{ a_n } = L$	Converges (absolutely) if $L < 1$ Diverges if $L > 1$ or if L is infinite	Test is inconclusive if $L = 1$. Useful if a_n involves n^{th} powers.
Absolute Value $\sum a_n $	$\sum a_n$	$\sum a_n \text{ converges} \Longrightarrow \sum a_n \text{ converges}$	Useful for series containing both positive and negative terms.
Alternating series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n (a_n > 0)$	Converges if $0 < a_{n+1} < a_n$ for all n and $\lim_{n \to \infty} a_n = 0$	Applicable only to series with alternating terms.

^{*}The Root and Limit Comparison tests are not included in the current textbook used in Calculus classes at Bates College.

List of standard series:

- 1. p-series (including harmonic series) converges if and only if p>1
- 2. geometric series convergence if and only if |r| < 1

Example. (problem 19 on page 746.)

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

Solution: Alternating series test

Example. (problem 20 on page 746)

$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k} - 1}{k(\sqrt{k} + 1)}$$

Solution: Limit comparison test

Example. (problem 21 on page 746)

$$\sum_{n=1}^{\infty} (-1)^n \cos \frac{1}{n^2}$$

Solution: Divergence test

Example. (problem 22 on page 746)

$$\sum_{k=1}^{\infty} \frac{1}{2 + \sin k}$$

Solution: Divergence test

Example. (problem 23 on page 746)

$$\sum_{n=1}^{\infty} \tan(\frac{1}{n})$$

Solution: Limit comparison test

Example. (problem 24 on page 746)

$$\sum_{n=1}^{\infty} n \sin(\frac{1}{n})$$

Solution: Divergence test

Example. (problem 25 on page 746)

$$\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$$

Solution: Ratio test

Example. (problem 26 on page 746)

$$\sum_{n=1}^{\infty} \frac{n^2+1}{5^n}$$

Solution: Root test

Example. (problem 27 on page 746)

$$\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^3}$$

Solution: Compare with $\frac{k \ln k}{k^3}$