Some Common Tor and Ext Groups

Abstract

We compute all the groups $G \otimes H$, $\operatorname{Tor}(G, H)$, $\operatorname{Hom}(G, H)$, and $\operatorname{Ext}(G, H)$, where G and H can be any of the groups \mathbb{Z} (the integers), $\mathbb{Z}/n = \mathbb{Z}/n\mathbb{Z}$ (the integers mod n), or \mathbb{Q} (the rationals). All but one are reasonably accessible. Because all these functors are biadditive, these cases suffice to handle any finitely generated groups G and H.

The emphasis here is on computation, not on the abstract definitions (which we don't give).

From the symmetry of the definition, we obviously have

$$G \otimes H \cong H \otimes G . \tag{1}$$

We write $\theta: G \times H \to G \otimes H$ for the universal bilinear pairing. Then by the definition of $G \otimes H$, any bilinear pairing $f: G \times H \to K$ of abelian groups factors uniquely through a homomorphism $\overline{f}: G \otimes H \to K$. For any integer n, we have

$$f(ng,h) = nf(g,h) = f(g,nh)$$
(2)

and hence, in $G \otimes H$,

$$(ng) \otimes h = n(g \otimes h) = g \otimes (nh).$$
(3)

Although the definition of Tor(G, H) is *not* symmetric, it is true that $\text{Tor}(G, H) \cong$ Tor(H, G). This requires some proof; we shall refrain from using this fact, choosing always to compute Tor(G, H) as the derived functor of $-\otimes H$, by using a free resolution of G.

Computing $G \otimes H$ and Tor(G, H) We begin with a triviality.

PROPOSITION 4 For any group H, $0 \otimes H = 0$.

Proof From equation (3) with n = 0, we have

$$0 \otimes h = (00) \otimes h = 0 (0 \otimes h) = 0. \quad \Box$$

PROPOSITION 5 For any H, we have $\mathbb{Z} \otimes H \cong H$, with the universal pairing $\theta: \mathbb{Z} \times H \to H$ given by $n \otimes h \mapsto nh$.

Proof This proof we give in full detail, as a pattern for other proofs.

Given a bilinear pairing $f: \mathbb{Z} \times H \to K$, we need to show there is a unique homomorphism $\overline{f}: H \to K$ such that $f = \overline{f} \circ \theta$. This forces $\overline{f}h = \overline{f}\theta(1,h) = f(1,h)$; we therefore *define* \overline{f} by $\overline{f}h = f(1,h)$ for all h. This *is* a homomorphism, because by bilinearity,

$$\bar{f}(h+h') = f(1,h+h') = f(1,h) + f(1,h') = \bar{f}h + \bar{f}h'.$$

It satisfies $\overline{f} \circ \theta = f$, because for any integer n we have

$$\overline{f}\theta(n,h) = \overline{f}(nh) = n\overline{f}h = nf(1,h) = f(n,h). \quad \Box$$

PROPOSITION 6 We have $\mathbb{Q} \otimes \mathbb{Q} \cong \mathbb{Q}$, with $\theta: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ given by $\theta(a \times b) = ab$.

Proof Given a bilinear pairing $f: \mathbb{Q} \times \mathbb{Q} \to K$, we are forced to define $\overline{f}: \mathbb{Q} \to K$ by $\overline{f}a = f(1, a)$, and this is a homomorphism. We have to check that it satisfies $\overline{f} \circ \theta = f$. Now $\overline{f}\theta(a, b) = \overline{f}(ab) = f(1, ab)$. To see that this agrees with f(a, b), we write a as a fraction m/n, with m and n integers; then by equation (2),

$$f(1,ab) = f\left(n\frac{1}{n},ab\right) = f\left(\frac{1}{n},nab\right) = f\left(\frac{1}{n},mb\right) = f\left(\frac{m}{n},b\right) = f(a,b).$$

(We warn that we may not be able to divide by n in the group K.)

This leaves $\mathbb{Z}/n \otimes H$. For this we use the usual free resolution

$$0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z}/n \longrightarrow 0, \tag{7}$$

in which the *n* denotes multiplication by *n*. We might as well compute $\text{Tor}(\mathbb{Z}/n, H)$ at the same time.

PROPOSITION 8 For any H, we have:

(a) $\mathbb{Z}/n \otimes H \cong H/nH$, where nH denotes the subgroup of all elements of H that are divisible by n;

(b) $\operatorname{Tor}(\mathbb{Z}/n, H) \cong {}_{n}H$, the subgroup $\{h \in H : nh = 0\}$ of elements of H of order n (or some divisor of n).

Proof When we tensor diagram (7) with H, the resulting long exact sequence simplifies by Proposition 5 to

$$0 \longrightarrow \operatorname{Tor}(\mathbb{Z}/n, H) \longrightarrow H \xrightarrow{n} H \longrightarrow \mathbb{Z}/n \otimes H \longrightarrow 0 .$$
(9)

We read off the kernel and cokernel of $n: H \to H$. \Box

COROLLARY 10 $\mathbb{Z}/n \otimes \mathbb{Q} = 0$ and $\operatorname{Tor}(\mathbb{Z}/n, \mathbb{Q}) = 0$. \Box

In view of the symmetry (1), the only tensor product left is $\mathbb{Z}/n \otimes \mathbb{Z}/m$.

LEMMA 11 As subgroups of \mathbb{Z} , we have $n\mathbb{Z} + m\mathbb{Z} = d\mathbb{Z}$, where d denotes the greatest common divisor gcd(n,m) of n and m.

Proof This is almost the definition of gcd(n, m). \Box

PROPOSITION 12 Let $d = \gcd(n, m)$. Then

- (a) $\mathbb{Z}/n \otimes \mathbb{Z}/m \cong \mathbb{Z}/d;$
- (b) $\operatorname{Tor}(\mathbb{Z}/n, \mathbb{Z}/m) \cong \mathbb{Z}/d.$

Proof We apply Proposition 8. For (a) we get $\mathbb{Z}/(n\mathbb{Z} + m\mathbb{Z})$, which Lemma 11 identifies. For (b) we need $\{i \in \mathbb{Z}/m : ni = 0\}$. Write n = n'd and m = m'd, so that m' and n' are coprime; we need ni to be divisible by m, which reduces to having i divisible by m'. Thus the answer is $m'\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/d$. \Box

Now to finish off the remaining Tor groups. Because \mathbb{Z} is projective, we have immediately

$$\operatorname{Tor}(\mathbb{Z}, H) = 0. \tag{13}$$

On the other hand, because $-\otimes \mathbb{Z}$ is essentially the identity functor by Proposition 5 and therefore exact, we have

$$\operatorname{Tor}(G,\mathbb{Z}) = 0. \tag{14}$$

As a companion to Corollary 10 we have

$$\operatorname{Tor}(\mathbb{Q},\mathbb{Z}/n) = 0. \tag{15}$$

This can be done by a simple trick, by writing multiplication by n in $\operatorname{Tor}(\mathbb{Q}, \mathbb{Z}/n)$ in two different ways. First, we write it as $\operatorname{Tor}(n, \mathbb{Z}/n)$, which is invertible with obvious inverse $\operatorname{Tor}(1/n, \mathbb{Z}/n)$. Second, we write it as $\operatorname{Tor}(\mathbb{Q}, n)$, which is plainly zero. (More generally, $F(\mathbb{Q}, \mathbb{Z}/n) = 0$ for any biadditive functor F, as in Corollary 10.)

This leaves only $\text{Tor}(\mathbb{Q}, \mathbb{Q})$. To handle this properly, we need a better description of $G \otimes \mathbb{Q}$.

LEMMA 16 Let G be an abelian group.

(a) If G is a torsion group, $G \otimes \mathbb{Q} = 0$.

(b) If G is a torsion-free group, every element of $G \otimes \mathbb{Q}$ has the form $g \otimes (1/n)$ for some $g \in G$ and integer $n \neq 0$, and $g \otimes (1/n) = g' \otimes (1/n')$ if and only if n'g = ng' in G.

Proof For (a), the only bilinear pairing $f: G \times \mathbb{Q} \to K$ is zero, because if mg = 0,

$$f(g,b) = f\left(g, m\frac{b}{m}\right) = f\left(mg, \frac{b}{m}\right) = f\left(0, \frac{b}{m}\right) = 0.$$

For (b), we take the set of all formal symbols g/n, where $g \in G$ and $n \in \mathbb{Z}$ is nonzero, and impose the relation that g/n = g'/n' if and only if n'g = ng'. This is an equivalence relation, because n'g = ng' and n''g' = n'g'' imply n'n''g = n'ng'', and hence n''g = ng'' (this is where we use the hypothesis that G is torsion-free).

We then define addition on the set E of equivalence classes by the usual rule for fractions,

$$\frac{g}{n} + \frac{g'}{n'} = \frac{n'g + ng'}{nn'},$$

and show it is well defined and makes E an abelian group. We define the bilinear pairing $\theta: G \times \mathbb{Q} \to E$ by $\theta(g, m/n) = (mg)/n$. Given a bilinear pairing $f: G \times \mathbb{Q} \to K$, we must define $\overline{f}: E \to K$ by $\overline{f}(g/n) = f(g, 1/n)$. This is a homomorphism because

$$\overline{f}\left(\frac{n'g+ng'}{nn'}\right) = f\left(n'g+ng',\frac{1}{nn'}\right)$$
$$= f\left(n'g,\frac{1}{nn'}\right) + f\left(ng',\frac{1}{nn'}\right) = f\left(g,\frac{1}{n}\right) + f\left(g',\frac{1}{n'}\right)$$

It satisfies $\overline{f} \circ \theta = f$ because

$$\overline{f}\theta\left(g,\frac{m}{n}\right) = \overline{f}\left(\frac{mg}{n}\right) = f\left(mg,\frac{1}{n}\right) = f\left(g,\frac{m}{n}\right).$$

COROLLARY 17 For any group G, we have $Tor(G, \mathbb{Q}) = 0$.

Proof Take any free resolution

$$0 \longrightarrow F_1 \xrightarrow{\partial} F_0 \xrightarrow{\epsilon} G \longrightarrow 0 \tag{18}$$

of G. The explicit description furnished by the Lemma shows that

$$\partial \otimes \mathbb{Q} \colon F_1 \otimes \mathbb{Q} \xrightarrow{\partial \otimes \mathbb{Q}} F_0 \otimes \mathbb{Q}$$

is a monomorphism, because if $x \in F_1$ is nonzero, so is $(\partial \otimes \mathbb{Q})x/n = \partial x/n$. \Box

Computing Hom(G, H) and Ext(G, H) We start with the analogues of Proposition 5 and equation (13).

PROPOSITION 19 For any group H we have $\operatorname{Hom}(\mathbb{Z}, H) \cong H$ and $\operatorname{Ext}(\mathbb{Z}, H) = 0$.

Proof Homomorphisms $\omega: \mathbb{Z} \to H$ correspond 1–1 to elements $h \in H$ by $h = \omega 1$. Conversely, given h, we define $\omega n = nh$. (This is almost one *definition* of \mathbb{Z} .) The second statement is immediate because \mathbb{Z} is projective. \Box

Next we deal with $G = \mathbb{Z}/n$, using the same free resolution (7) as before.

PROPOSITION 20 For any group H we have:

- (a) $\operatorname{Hom}(\mathbb{Z}/n, H) \cong {}_{n}H$, the subgroup of H as in Proposition 8;
- (b) $\operatorname{Ext}(\mathbb{Z}/n, H) \cong H/nH$.

Proof When we apply the functor Hom(-, H) to equation (7) and use Proposition 19, we obtain the exact sequence

 $0 \longrightarrow \operatorname{Hom}(\mathbb{Z}/n, H) \longrightarrow H \xrightarrow{n} H \longrightarrow \operatorname{Ext}(\mathbb{Z}/n, H) \longrightarrow 0,$

which has to be isomorphic to diagram (9). (Part (a) was obvious directly.) \Box

This result allows us to read off all the groups $\operatorname{Hom}(\mathbb{Z}/n, H)$ and $\operatorname{Ext}(\mathbb{Z}/n, H)$ as in Proposition 12 etc.; several of them are obvious anyway.

COROLLARY 21 We have the following groups:

- (a) $\operatorname{Hom}(\mathbb{Z}/n,\mathbb{Z}) = 0$ and $\operatorname{Ext}(\mathbb{Z}/n,\mathbb{Z}) \cong \mathbb{Z}/n$;
- (b) Hom $(\mathbb{Z}/n, \mathbb{Z}/m) \cong \mathbb{Z}/d$ and Ext $(\mathbb{Z}/n, \mathbb{Z}/m) \cong \mathbb{Z}/d$, where $d = \operatorname{gcd}(n, m)$;
- (c) $\operatorname{Hom}(\mathbb{Z}/n, \mathbb{Q}) = 0$ and $\operatorname{Ext}(\mathbb{Z}/n, \mathbb{Q}) = 0$. \Box

This leaves only the case $G = \mathbb{Q}$.

PROPOSITION 22 For the group \mathbb{Q} we have:

- (a) $\operatorname{Hom}(\mathbb{Q},\mathbb{Q})\cong\mathbb{Q};$
- (b) $\operatorname{Ext}(G, \mathbb{Q}) = 0$ for any group G.

Proof Part (a) is easy enough: homomorphisms $\omega : \mathbb{Q} \to \mathbb{Q}$ correspond 1–1 to elements $h \in \mathbb{Q}$ by $h = \omega 1$ and $\omega a = ah$. These correspondences are inverse by the identities 1h = h and $\omega a = a(\omega 1)$. To see the second, we must write a = m/n and use

$$n(\omega a) = n\omega\left(\frac{m}{n}\right) = \omega m = m(\omega 1) = na(\omega 1)$$

Because \mathbb{Q} is torsion-free, we deduce $\omega a = a(\omega 1)$.

Part (b) is equivalent to the injectivity of \mathbb{Q} . If we use the free resolution (18) of G, we have to show that $\operatorname{Hom}(F_0, \mathbb{Q}) \to \operatorname{Hom}(F_1, \mathbb{Q})$ is surjective. (The fact that any divisible group is injective is standard, but not trivial.) \Box

By the same trick as for equation (15), we have

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}/n) = 0 \quad \text{and} \quad \operatorname{Ext}(\mathbb{Q},\mathbb{Z}/n) = 0, \tag{23}$$

except that this time, direct proof of the second equation from the definitions is not so easy.

It is obvious that

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}) = 0, \tag{24}$$

because no nonzero element of \mathbb{Z} is divisible by n for all n. This leaves only one group to determine.

The group $\operatorname{Ext}(\mathbb{Q},\mathbb{Z})$ *This subsection is strictly optional.* The group $\operatorname{Ext}(\mathbb{Q},\mathbb{Z})$ is much more difficult to determine. It is easy to see that it is a rational vector space, simply from the presence of \mathbb{Q} , but harder to see what its dimension is. This group is not as mysterious as is sometimes claimed, but is related to adèle groups familiar to number theorists. [The result is surely not new, but I don't have a reference.]

Denote by \mathbb{Q}_p the field of *p*-adic numbers, for each prime *p*, and by $\mathbb{Z}_p \subset \mathbb{Q}_p$ the subring of *p*-adic integers (not to be confused with \mathbb{Z}/p).

THEOREM 25 We have $\operatorname{Ext}(\mathbb{Q},\mathbb{Z}) \cong A/\mathbb{Q}$, where A denotes the adèle group consisting of all sequences $(x_2, x_3, x_5, x_7, \ldots)$ of p-adic numbers $x_p \in \mathbb{Q}_p$ such that $x_p \in \mathbb{Z}_p$ for all except finitely many p, and $\mathbb{Q} \subset A$ denotes the subgroup of all sequences (x, x, x, \ldots) with $x \in \mathbb{Q}$. (Note to number theorists: A has no coordinate indexed by the reals \mathbb{R} .) It is thus an uncountable rational vector space.

We begin by applying the functor $\operatorname{Hom}(\mathbb{Q}, -)$ to the short exact sequence

 $0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0,$

to obtain the long exact sequence

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}) \longrightarrow \operatorname{Hom}(\mathbb{Q},\mathbb{Q}) \longrightarrow A \longrightarrow \operatorname{Ext}(\mathbb{Q},\mathbb{Z}) \longrightarrow \operatorname{Ext}(\mathbb{Q},\mathbb{Q}), \qquad (26)$$

where we write $A = \text{Hom}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z})$ and both end groups vanish. Since $\text{Hom}(\mathbb{Q}, \mathbb{Q}) \cong \mathbb{Q}$, we have only to identify A to establish the Theorem.

The torsion group \mathbb{Q}/\mathbb{Z} decomposes as $\bigoplus_p \mathbb{Z}/p^{\infty}$, where \mathbb{Z}/p^{∞} is the well-known divisible group defined as $\mathbb{Z}[p^{-1}]/\mathbb{Z}$. Here, $\mathbb{Z}[p^{-1}] \subset \mathbb{Q}$ denotes the subring of all rationals of the form m/p^n , with integers $n \ge 0$ and m. We therefore study $\operatorname{Hom}(\mathbb{Q}, \mathbb{Z}/p^{\infty})$, which first requires $\operatorname{Hom}(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty})$.

LEMMA 27 We have the following descriptions of the *p*-adic numbers:

(a) The endomorphism ring $\operatorname{End}(\mathbb{Z}/p^{\infty}) = \operatorname{Hom}(\mathbb{Z}/p^{\infty}, \mathbb{Z}/p^{\infty})$ of \mathbb{Z}/p^{∞} may be identified with the ring of p-adic integers \mathbb{Z}_p ;

(b) There are isomorphisms of groups

$$\operatorname{Hom}(\mathbb{Q},\mathbb{Z}/p^{\infty})\cong\operatorname{Hom}(\mathbb{Z}[p^{-1}],\mathbb{Z}/p^{\infty})\cong\mathbb{Q}_p,$$

where $\omega: \mathbb{Q} \to \mathbb{Z}/p^{\infty}$ corresponds to an element of $\mathbb{Z}_p \subset \mathbb{Q}_p$ if and only if $\omega 1 = 0$.

Proof In (a), the group \mathbb{Z}/p^{∞} is the union of the cyclic subgroups \mathbb{Z}/p^n generated by $1/p^n$, for n > 0. Any homomorphism $\omega: \mathbb{Z}/p^{\infty} \to \mathbb{Z}/p^{\infty}$ must map \mathbb{Z}/p^n into itself; thus the endomorphism ring $\operatorname{End}(\mathbb{Z}/p^{\infty})$ is the limit $\lim_n \operatorname{End}(\mathbb{Z}/p^n)$ of the endomorphism rings $\operatorname{End}(\mathbb{Z}/p^n)$. By Corollary 21, $\operatorname{End}(\mathbb{Z}/p^n) \cong \mathbb{Z}/p^n$ as a ring, and we may therefore identify the limit with \mathbb{Z}_p .

Because \mathbb{Z}/p^{∞} has unique division by any integer m prime to p, every homomorphism $\mathbb{Z}[p^{-1}] \to \mathbb{Z}/p^{\infty}$ extends uniquely to a homomorphism $\mathbb{Q} \to \mathbb{Z}/p^{\infty}$; hence the first isomorphism in (b). Any $\omega: \mathbb{Z}[p^{-1}] \to \mathbb{Z}/p^{\infty}$ must satisfy $p^n(\omega 1) = 0$ for some n, so that $(\omega p^n)\mathbb{Z} = 0$; then $\omega \circ p^n$ factors through $\mathbb{Z}/p^{\infty} = \mathbb{Z}[p^{-1}]/\mathbb{Z}$. This gives enough information to identify the inclusion $\operatorname{End}(\mathbb{Z}/p^{\infty}) \subset \operatorname{Hom}(\mathbb{Z}[p^{-1}], \mathbb{Z}/p^{\infty})$ with $\mathbb{Z}_p \subset \mathbb{Q}_p$. \Box

Proof of Theorem 25 Instead of dealing with $\operatorname{Hom}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z})$ directly, we first embed

$$\mathbb{Q}/\mathbb{Z} = \bigoplus_p \mathbb{Z}/p^\infty \subset \prod_p \mathbb{Z}/p^\infty,$$

and write

$$A = \operatorname{Hom}(\mathbb{Q}, \mathbb{Q}/\mathbb{Z}) \subset \operatorname{Hom}(\mathbb{Q}, \prod_{p} \mathbb{Z}/p^{\infty}) \cong \prod_{p} \mathbb{Q}_{p},$$

with the help of Lemma 27. Then A consists of those homomorphisms $\omega: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ whose coordinates $\omega_p: \mathbb{Q} \to \mathbb{Z}/p^{\infty}$ satisfy $\omega_p 1 = 0$ for all except finitely many p. Thus A is as described. Finally, we note that the subgroup $\operatorname{Hom}(\mathbb{Q}, \mathbb{Q}) \cong \mathbb{Q}$ of A given by diagram (26) is as indicated. \Box