
On the Size of Convolutional Neural Networks and
Generalization Performance

Maya Kabkab*†, Emily Hand*, Rama Chellappa*†
Center for Automation Research, UMIACS*

Department of Electrical and Computer Engineering†
University of Maryland, College Park

Email: {mayak, emhand, rama}@umiacs.umd.edu

Abstract—While Convolutional Neural Networks (CNNs) have
recently achieved impressive results on many classification tasks,
it is still unclear why they perform so well and how to properly
design them. In this work, we investigate the effect of the
convolutional depth of a CNN on its generalization performance
for binary classification problems. We prove a sufficient condition
—polynomial in the depth of the CNN— on the training database
size to guarantee such performance. We empirically test our
theory on the problem of gender classification and explore
the effect of varying the CNN depth, as well as the training
distribution and set size.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are now widely
used for classification problems due to their state-of-the-art
performance (see, e.g., [1], [2]). However, one important
challenge, which remains an open problem, is how to size
them appropriately. When designing a CNN, the most common
approach is to experiment with the depth (and many other
parameters), until a suitable model is found. It is known
that if the CNN is too shallow, then it may not correctly
represent the underlying relationship between the input and its
corresponding class (i.e., under-fit). If it is too deep, however,
it may follow irrelevant properties of the dataset on which it
is trained (i.e., over-fit). In this paper, we try to address this
problem by investigating the relationship between the depth of
a CNN and its generalization performance using approaches
from statistical learning theory.

Recently, CNNs have drawn much needed attention, and a
lot of empirical work has attempted to understand why they
perform so well [3], [4] as well as how to properly design
them [5], [6]. However, from a theoretical perspective, CNNs
are still not completely understood. While theoretical results
on deep architectures exist [7]–[10], they are almost always
restricted to feedforward neural networks.

In this paper, we investigate the effect of CNN depth on its
generalization performance. Specifically, we ask the question
of how to pick a suitable CNN depth given a training database
size. We assume that the examples are drawn according to an
arbitrary, fixed, probability distribution, and that the learning
algorithm will produce a CNN which will correctly predict on
a substantial fraction of the training set. We are concerned with
how the same CNN will perform on unseen (testing) samples,
drawn from the same, or a slightly different, distribution. Our
work is based on the VC dimension, which was first introduced
in [11], [12] and provided a mathematical foundation for
answering such questions. We follow an approach similar to

... ...

...

..
.
.

Fig. 1. Model architecture of a CNN with d convolutional layers and d′

fully connected layers.

[7], which is specific to feedforward networks, but extend it
for the case of CNNs. We restrict our study to the problem of
binary classification in which the set of possible labels contains
only two elements, e.g., 0 and 1.

We show that, if the training and testing sampling distri-
butions are the same, a sufficient condition to guarantee valid
generalization is for the CNN training set size to be some
constant times d4 where d is the depth of the convolutional
layers. We also show how to generalize the condition for
different training and testing distributions. We empirically
demonstrate that these conditions are sufficient but often not
necessary, and examine the behavior of the testing error as we
vary the CNN depth, the training distribution, and set size.

The paper is organized as follows: section II introduces
the CNN model architecture under consideration, section III
develops the mathematical framework as well as the theoretical
results, and finally, section IV provides experimental results on
the binary problem of gender classification.

II. NETWORK ARCHITECTURE

In this work, we consider an architecture similar to the
one presented in [13]. As shown in Figure 1, a CNN of depths
(d, d′) consists of d convolutional layers and d′ fully connected
layers. The l-th layer of a CNN is composed of the following:

(i) a filter bank sublayer, which takes as input xl, a 3D
array with nl1 2D feature maps of size nl2 × nl3 each,
and outputs a 3D array with ml

1 2D feature maps of size
ml

2×ml
3 each. The size of the output maps is determined

by the size f l1×f l2 of the convolution filters and is given
by ml

2 = nl2 − f l1 + 1 and ml
3 = nl3 − f l2 + 1. Filter klij

connects the i-th input feature map xli to the j-th output
feature map: ylj = alj ·tanh

(∑
i k
l
ij ∗ xli

)
. The filters and

the coefficients {alj} are trainable parameters.
(ii) a rectification sublayer, which only retains positive in-

puts: ȳlijk = max{0, ylijk}.
(iii) a pooling and subsampling sublayer, which keeps the

maximum (or the average) from each pl × pl window
and outputs ¯̄yl.

(iv) a local contrast normalization sublayer, which performs
the following operations: vlijk = ¯̄ylijk −

∑
i,p,q wpq ·

¯̄yli,j+p,k+q , where w is a Gaussian window of size

gl × gl. Then, ¯̄̄ylijk(= xl+1
ijk) =

vlijk

max{µl,σl
jk}

, where

σljk =
∑
ipq wpq · (vli,j+p,k+q)2 and µl = mean(σljk).

The d′ fully connected layers have a fixed structure and
trainable weights Wf . In the rest of the paper, we will assume
that d′ is fixed and study the effect of varying d on the
classifier’s generalization performance. As mentioned earlier,
we restrict our study to binary classification, i.e., CNNs which
implement a function that maps samples from the input domain
I , to a boolean value in {0, 1} .

III. RELATIONSHIP BETWEEN DEPTH AND
GENERALIZATION PERFORMANCE

A. Problem formulation

In this paper, we are interested in characterizing how
the depth of a CNN affects its generalization performance.
Formally, we let Cd be the set of convolutional neural net-
works with d convolutional layers, for some fixed values
of {nl1, nl2, nl3,ml

1, f
l
1, f

l
2, p

l, gl}dl=1, as defined in section II
above. This set includes all such CNNs realized by varying
the learned parameters {alj , klij}i,j,l ∪ {Wf}. As with any
supervised learning algorithm, a CNN learning algorithm starts
with a training set S = {x1, x2, . . . , x|S|} ⊆ I , assumed to be
drawn at random according to a fixed but arbitrary distribution
DS on the input domain I . The aim of the algorithm is to find
a suitable CNN c ∈ Cd which agrees with the ground truth,
or target, hypothesis h∗ : I → {0, 1} as much as possible. It
is assumed that the true labels of the training samples, i.e.,
h∗(x1), h∗(x2), . . . , h∗(x|S|), are known. The resulting CNN
c will have an empirical training error given by:

êS(c) ,
1

|S|

|S|∑
i=1

1 (hc(xi) 6= h∗(xi)) , (1)

where 1(.) is the indicator function and hc(.) is the boolean
function implemented by the CNN c. Clearly, êS(c) is a
random variable since the set S is chosen at random. However,
if the learning algorithm is designed properly, êS(c) will tend
to be small. This does not, however, provide any guarantee as
to how the CNN classifier will perform on test samples. We
assume that testing samples are drawn at random according
to a distribution DT . We are thus interested in the average
performance of c on these new samples:

eT (c) , PrDT
[hc(x) 6= h∗(x)] , (2)

where x is a random sample picked according to DT .

B. Same training and testing distribution

We first look at the case when the training and testing
sampling distributions are the same, i.e., DS ∼ DT . As
previously stated, a CNN c (or its corresponding boolean
function hc(.)), which is accurate on the training set (i.e.,
has small êS(c)), might not necessarily be accurate on new
examples which are not in the training set, even if the new
examples are drawn from the same distribution. In this case,
we are interested in performance guarantees on eT (c) = eS(c),
whenever êS(c) is small. To this end, we first state Lemma 1
which computes the VC dimension of CNNs of convolutional
depth d. The VC dimension of a set of binary functions, is the
maximum number m of vectors which can be separated into
two classes in all 2m ways using functions from the set [14].

Lemma 1 Let Hd ,
{
hc : I → {0, 1} | c ∈ Cd

}
be the set

of boolean functions implementable by all CNNs in Cd, and
q(d) ,

∑d
l=1m

l
1 · (nl2 − f l1 + 1) · (nl3 − f l2 + 1) · (nl1nl2nl3 +

ml
1(gl)2+(pl)2). Then, the VC dimension of the class of CNNs

defined in section III-A above satisfies

VCdim
(
Hd
)
≤ α (d · q(d))

2
, (3)

for some constant α.

Proof Sketch: A parametrized class of functions with param-
eters in IRt that is computable in no more than p operations
has a VC dimension which is O

(
t2p2

)
(see [15, Theorems

5, 8] for allowable operations). We have: t =
∑d
l=1(ml

1 +
nl1m

l
1f
l
1f
l
2) + |Wf |, where |Wf | is the number of trainable

weights in the fully connected layers. The computational
complexity of the l-th convolutional layer of a CNN is at most
O(ml

1 ·(nl2−f l1+1)·(nl3−f l2+1)·(nl1nl2nl3+ml
1(gl)2+(pl)2).

This result, together with the fact that we have assumed d′ to
be fixed, proves the lemma. An exact expression for the VC
dimension bound which does not introduce a constant α can
be derived. It is omitted here for clarity of presentation. �

We now state the following theorem on the CNN generalization
performance guarantees:

Theorem 1 For any 0 < δ < 1, ε > 0, 0 < γ ≤ 1, if S is
chosen at random according to the distribution DS , such that

|S| ≥ 8

γ2ε
max

{
ln

8

δ
, 2α (d · q(d))

2
ln

16

γ2ε

}
, (4)

then, with probability at least 1− δ, for every c ∈ Cd, one of
the following will hold:

(i) êS(c) > (1− γ)ε,

(ii) eT (c) = eS(c) ≤ ε, êS(c) ≤ (1− γ)ε.

Proof Sketch: The proof can be derived using Lemma 1 and
[16, Theorem A3.1]. Note that this result is not restricted to
the exact architecture given in section II and any activation
function can be used as long as it can be computed using the
operations listed in [15, Theorems 5, 8].�

Theorem 1 implies that if condition (4) is met, and if the
trained CNN c is such that êS(c) is as small as desired,

then we know that, with high probability, c will exhibit good
generalization performance. Let M = max

l=1,...,d
{ml

1 · (nl2 −

f l1 + 1) · (nl3 − f l2 + 1) · (nl1nl2nl3 + ml
1(gl)2 + (pl)2)}, then

q(d) ≤M ·d. From (4), we see that, for proper generalization,
the training sample size should be larger than M ′ · d4 where
M ′ = M2α · 16

γ2ε · ln
16
γ2ε . Conversely, when designing a CNN,

given a fixed training set size |S|, we know that the CNN is
very likely to exhibit good generalization performance if the

depth of the convolutional layers is less than 4

√
|S|
M ′ . We also

state a converse to Theorem 1 (the proof of which is based on
[17, Theorem 1]):

Theorem 2 For any learning algorithm which uses a training
sample set S of size

|S| ≤
VCdim

(
Hd
)
− 1

2eε
(5)

(where e denotes the base of the natural logarithm), there exists
a CNN c ∈ Cd and a distribution D such that the expected
error of c (w.r.t. D) is at least ε.

C. Different training and testing distributions

In section III-B above, we addressed the question of when
a CNN is expected to generalize from |S| training examples
chosen according to an arbitrary probability distribution DS ,
assuming that test examples are drawn from the same distri-
bution. In this section, we relax this assumption and allow the
training and testing distributions to be different, DS and DT ,
respectively. To this end, we define the variation divergence
between the two distributions [18]:

τ , 2 sup
B∈B
|PrDS

[B]− PrDT
[B]| , (6)

where B is the set of measurable subsets under DS and DT .
While we allow the two distributions to be different, our hope
is that they are not too different so that learning from DS is
still somehow relevant for testing on DT . We now reformulate
Theorem 1 for the case when τ 6= 0:

Theorem 3 Let 0 < δ′ < 1, ε′ > τ , 0 < γ′ ≤ 1. If the
training and testing sets are chosen independently at random
according to the distributions DS and DT , respectively, such
that

|S| ≥ 8

γ̄2 (ε′ − τ)
max

{
ln

16

δ′
, 2α (d · q(d))

2
ln

16

γ̄2 (ε′ − τ)

}
,

(7)

where

γ̄ = γ′ ·
(

1 +
τ

ε′ − τ

)
− τ

ε′ − τ
, (8)

then, with probability at least 1− δ′, for every c ∈ Cd, one of
the following will hold:

(i) êS(c) > (1− γ′)ε′,

(ii) eT (c) ≤ ε′, êS(c) ≤ (1− γ′)ε′.

Proof: We define the following event: A =
{ For every c ∈ Cd, one of (i) or (ii) holds }. We show
that the probability that A does not occur is less than δ′:

Pr
[
Ā
]

= Pr [∃c : eT (c) > ε′, eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]
+ Pr [∃c : eT (c) > ε′, eS(c) > ε′, êS(c) ≤ (1− γ′)ε′]
≤ Pr [∃c : eT (c) > ε′, eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′]
≤ Pr [∃c : ε′ − τ < eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′] (?)

≤ Pr [∃c : eS(c) > ε′ − τ, êS(c) ≤ (1− γ′)ε′]
+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′]

≤ δ′

2
+
δ′

2
= δ′. (??)

where (?) follows from the fact that, from [18, Theorem 1],
eT (c) ≤ eS(c) + τ , and (??) is an application of Theorem 1
with δ = δ′/2, ε = ε′ − τ , and γ = γ̄. �

Note that Theorem 3 requires that ε′ > τ . As mentioned earlier,
we are interested in the case when τ is small so that the
learning is still useful. If τ � ε′, then γ̄ ≈ γ′ and (4) and
(7) are very close. When τ increases, so does the lower bound
on |S|. This is to be expected, as we are looking at learning
from and testing on two very different distributions.

IV. EXPERIMENTAL RESULTS

While section III gives some insight as to how to design
CNNs which exhibit desirable generalization performance, it
has been shown that neural networks tend to perform well
with training sets which are smaller than required by the
VC dimension bounds [9]. We therefore attempt to gain a
better and more practical understanding of the problem by
designing experiments for gender classification of face images.
To this end, we use three different datasets: Images of Groups
(GROUPS) [19], Labeled Faces in the Wild (LFW) [20],
and Facetracer [21]. We resize face images to 64x64 and
normalize them using histogram equalization. We then use
mean-subtraced normalized face images to train CNNs of
convolutional depths 3, 4, and 5. Once the CNN is trained, we
classify new face images by resizing and normalizing them,
then applying the learned model to them. We use the Caffe
framework [22] to train and test the CNNs.

A. Method

For each depth d = 3, 4, 5, we select uniform random
subsets of varying sizes from each training dataset. Since,
as noted in Section III-B, a sufficient training sample size
which guarantees good generalization is proportional to d4, we
choose the random training subsets to have sizes |S| = β · d4
for different values of β. Then, for each depth, dataset,
and training subset size, we train a CNN (starting from a
random weight initialization) until we reach a training error
êS(c) < 0.05. We then test the resulting CNN on a testing set
T in order to estimate eT (c). For the case when the testing
and training distributions are the same, we perform 5-fold
cross-validation using the protocol specified in [23] for LFW
and GROUPS, and five random splits for Facetracer. We also
perform cross-dataset testing, training on subsets of one dataset
and testing on the other two.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: LFW, Test: LFW, Depth: 4
Train: LFW, Test: LFW, Depth: 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: GROUPS, Test: GROUPS, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 5

Fig. 2. Generalization performance of CNNs trained and tested on LFW (top)
and GROUPS (bottom) for varying training set sizes. For a fixed generalization
performance, deeper networks require more training data.

B. Architectures

As mentioned in section II, each convolutional layer of
the CNN is composed of a filter bank sublayer, a rectification
sublayer, a pooling and subsampling sublayer, and a local
contrast normalization sublayer. All pooling sublayers are max-
pooling and use 3×3 windows. All local contrast normalization
sublayers use 5 × 5 windows, except for the first one, which
uses 7 × 7 windows. The first layer’s filter bank sublayer
consists of a 15×15 convolution mask applied every 3 pixels,
resulting in 96 feature maps. The second filter bank sublayer
has 5× 5 convolution filters with 256 output maps. The third
(and, when needed, fourth and fifth) sublayer uses 3×3 kernels
with 384 feature map outputs.The convolutional layers are
followed by three fully connected layers. The first two have
4096 outputs and are each followed by rectification and a 50%
dropout. The last fully connected layer has two outputs. We
do not attempt to optimize the architecture of the CNNs and
keep it fixed in the experiments, only varying the convolutional
depth d.

C. Results

Since the designed CNNs have different training errors,
comparing their testing accuracies would not be very informa-
tive. Instead, we consider the difference between the testing
and training errors. When dataset D1 is used for training and
dataset D2 for testing, we denote this difference by ∆D1,D2.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 3

Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 4

Train: Facetracer, Test: Facetracer, Depth: 4

Fig. 3. Generalization performance of CNNs of depths 3 (top) and 4 (bottom)
trained and tested on the same datasets. Other than the training set size, factors
such as the training distribution affect generalization performance.

1) Same training and testing distribution: In the case
of the same training and testing distribution, we take the
average across the five cross-validation tests. In general, and
as expected, we notice that ∆D1,D1 decreases with the training
set size. For instance, Figure 2 plots, for depths d = 3, 4, 5,
∆LFW,LFW and ∆GROUPS,GROUPS vs. the training set size |S| (in
logscale). We note that, when plotted against |S|, ∆LFW,LFW
behaves similarly for depths 3 and 4, and the CNNs actually
achieve good generalization performance for relatively small
training set sizes. For example, to have ∆LFW,LFW ≤ 0.05, |S|
should only be greater than about 1500. This is much smaller
than the bound given in Theorem 1 which is actually very
large (in fact, even for d = 1, q(1) is larger than the total
number of images in GROUPS and Facetracer). It also seems
to be the same for both d = 3 and d = 4, which is contrary
to what was expected. For d = 5, slight over-fitting seems to
take place, and larger training set sizes are needed to achieve
similar generalization performance as in shallower networks.
As seen in the bottom plot, we observe a similar behavior with
GROUPS but the over-fitting is apparent starting from d = 4.
As previously mentioned, while shown to be tight in Theorem
2, bounds based on the VC dimension tend to be very large as
they provide generalization performance guarantees regardless
of the underlying probability distribution on the training and
testing examples, and of the training algorithm used [15].
In fact, Figure 3 shows that while the CNN performance
does generally improve with larger training sets, other aspects,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 3
Train: GROUPS, Test: Facetracer, Depth: 3
Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 4
Train: GROUPS, Test: Facetracer, Depth: 4
Train: Facetracer, Test: Facetracer, Depth: 4

Fig. 4. Generalization performance of CNNs of depths 3 (top) and 4 (bottom)
tested on Facetracer and trained on different datasets. For a fixed performance,
more training samples are needed for cross-dataset testing.

especially the sample distribution, have a considerable effect.
For example, the results seem to suggest that CNNs perform
better on LFW gender classification than on GROUPS gender
classification. The training algorithm is also important as it
can restrict the set of realizable CNNs to a subset of Cd. Our
training uses dropout in the fully connected layers. Dropout is a
very well known technique to reduce overfitting in deep neural
networks [24]. However, CNNs with dropout and without
dropout have the same VC dimension and therefore share the
same bounds in Theorem 1. Since dropout has become almost
standard in state-of-the-art CNN implementations, we chose
to only carry out experiments using it. However, we naturally
expect the over-fitting behavior to be much more prominent
for deep CNNs which do not use dropout.

2) Different training and testing distributions: Theorem
3 suggests that more training samples are needed for cross-
dataset testing in order to achieve the same generalization
performance compared to when the training and testing sam-
ples have the same distribution. This is shown to be clearly
the case in Figure 4. In the top figure, we see that, for
depth 3, to achieve ∆D1,D2 < 0.2, for D2 = Facetracer, we
need |S| to be greater than 105, 1000, and 1300, for D1 =
Facetracer, LFW, and GROUPS, respectively. Figure 4 also
shows that training using the LFW dataset seems to be more
“relevant” for testing on Facetracer. This suggests that the
variation divergence τ between the underlying distributions of
Facetracer images and LFW images could be smaller than that

between the distributions of Facetracer and GROUPS images.
However, τ cannot be accurately estimated from finite samples
of distributions [18]. We therefore seek a different approach to
quantifying the distance between the distributions. We consider
the method proposed in [25] to estimate the KL divergence
between distributions based on k-th nearest neighbor distances.
The KL divergence is a non-symmetric measure of the differ-
ence between two probability distributions. According to [25],
given {X1, . . . Xm} and {Y1, . . . , Yp} n-dimensional samples
drawn according to two distributions D1 and D2, respectively,
the KL divergence estimate is given by:

D̂(D1||D2) =
n

m

m∑
i=1

ln
νk(i)

ρk(i)
+ ln

p

m− 1
, (9)

where νk(i) is the distance between Xi and its k-th nearest
neighbor in {Yj}, and ρk(i) is the distance between Xi

and its k-th nearest neighbor in {Xj}j 6=i. The choice of
k trades off bias and variance. While it is true that the
number of images available is relatively small compared
to their dimension (64x64x3) and therefore, the KL diver-
gence estimates are not very accurate, we notice that both
D̂(DFacetracer||DLFW) and D̂(DLFW||DFacetracer) are consistently
smaller (by a factor of around 3) than D̂(DFacetracer||DGROUPS)
and D̂(DGROUPS||DFacetracer) for different values of k ranging
from 1 to 10. This difference could explain why, when tested
on Facetracer, CNNs trained using LFW perform better than
those trained using GROUPS.

In the bottom plot of Figure 4, we notice an over-fitting
trend for the cross-dataset case at depth 4. This is in contrast
with the findings when the training and testing samples have
the same distribution. We investigate this on a different dataset
(LFW) and across depths 3, 4 and 5. The results are shown
in Figure 5. In the top figure, we see that the generalization
performance tends to become worse as the depth increases,
especially for models trained on GROUPS. In the bottom
figure, the x-axis is changed to β (where |S| = β · d4) and we
notice that for large β (> 10), models trained on GROUPS
behave similarly across depths. This means that, if to achieve
a certain generalization performance, a training set size β · 34
is needed for CNNs of depth 3, then approximately β · 44 and
β · 54 training samples are needed to achieve the same level
of performance for CNNs of depths 4 and 5, respectively. It
seems that, in this case, the number of samples needed for good
generalization scales with d4 as predicted by the theoretical
bound (albeit with a smaller multiplicative constant). We found
similar trends when testing on the GROUPS and Facetracer
datasets but the plots are omitted due to space limitations.

V. CONCLUSION

In this paper, we extended various statistical learning
theorems to characterize the relationship between the depth
of a CNN, the size of the training set, and the generalization
performance. We proved that whenever the training and testing
distributions are the same, if the training set size is some
constant times d4, then the CNN will, with high probability,
exhibit good generalization. We also showed that this bound in-
creases when the training and testing distributions are different,
and characterized it as a function of the variation divergence
between the distributions. We then implemented deep CNNs
for the problem of gender recognition on three well-known

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

β

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

Fig. 5. Generalization performance of CNNs tested on LFW and trained on
different datasets. The generalization performance tends to become worse as
the depth increases. The d4 relationship described in Theorem 1 is apparent
in the bottom figure.

datasets. We empirically demonstrated that over-fitting tends
to occur for very deep networks, which require larger training
sets to achieve generalization performance similar to shallower
versions. This is especially the case when the training and test-
ing distributions are different. In our future work, we plan to
further develop our theory and experiments to study the effects
of other CNN parameters, extend to multi-class classification
problems, as well as investigate the impact of other factors
such as the underlying distribution and the training algorithm.

ACKNOWLEDGEMENTS

This research is based upon work supported by the Office
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via IARPA
R&D Contract No. 2014-14071600012. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the ODNI,
IARPA, or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in IEEE CVPR, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[3] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in ICLR Workshops, 2014.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[5] D. Eigen, J. Rolfe, R. Fergus, and Y. LeCun, “Understanding deep archi-
tectures using a recursive convolutional network,” in ICLR Workshops,
2014.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] E. B. Baum and D. Haussler, “What size net gives valid generalization?”
Neural computation, vol. 1, no. 1, pp. 151–160, 1989.

[8] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in NIPS, 2014.

[9] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the size
of the network,” IEEE Transactions on Information Theory, vol. 44,
no. 2, pp. 525–536, 1998.

[10] M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,”
IEEE Transactions on Neural Networks, vol. 25, no. 8, pp. 1553–1565,
2014.

[11] T. M. Cover, “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition,” IEEE Transactions
on Electronic Computers, no. 3, pp. 326–334, 1965.

[12] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Theory of
Probability & Its Applications, vol. 16, no. 2, pp. 264–280, 1971.

[13] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in IEEE ICCV,
2009.

[14] V. Vapnik, The nature of statistical learning theory. Springer Science
& Business Media, 2000.

[15] P. L. Bartlett and W. Maass, “Vapnik-Chervonenkis dimension of neural
nets,” The handbook of brain theory and neural networks, pp. 1188–
1192, 2003.

[16] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis dimension,” Journal of the ACM,
vol. 36, no. 4, pp. 929–965, 1989.

[17] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, “A general
lower bound on the number of examples needed for learning,” Infor-
mation and Computation, vol. 82, no. 3, pp. 247–261, 1989.

[18] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Machine
learning, vol. 79, no. 1-2, pp. 151–175, 2010.

[19] A. C. Gallagher and T. Chen, “Understanding images of groups of
people,” in IEEE CVPR, 2009.

[20] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “La-
beled faces in the wild: A database for studying face recognition in
unconstrained environments,” Technical Report 07-49, University of
Massachusetts, Amherst, vol. 1, no. 2, 2007.

[21] N. Kumar, P. Belhumeur, and S. Nayar, “Facetracer: A search engine
for large collections of images with faces,” in ECCV, 2008.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[23] P. Dago-Casas, D. González-Jiménez, L. L. Yu, and J. L. Alba-Castro,
“Single- and cross-database benchmarks for gender classification under
unconstrained settings,” in IEEE ICCV Workshops, 2011.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[25] Q. Wang, S. R. Kulkarni, and S. Verdú, “Divergence estimation
for multidimensional densities via-nearest-neighbor distances,” IEEE
Transactions on Information Theory, vol. 55, no. 5, pp. 2392–2405,
2009.

