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Abstract
We introduce a solid harmonic wavelet scattering
representation, which is invariant to rigid move-
ments and stable to deformations, for regression
and classification of 2D and 3D images. Solid
harmonic wavelets are computed by multiply-
ing solid harmonic functions with Gaussian win-
dows dilated to different scales. Invariant scatter-
ing coefficients are obtained by cascading such
wavelet transforms with the complex modulus
nonlinearity. We study an application of solid
harmonic scattering invariants to the estimation
of quantum molecular energies, which are also
invariant to rigid movements and stable with re-
spect to deformations. Linear or bilinear regres-
sions over scattering invariants provide close to
state of the art results over a database of organic
molecules. 1

1. Introduction
Prior information on invariants of a classification or regres-
sion problem can be used to reduce its dimensionality and
derive precise estimations from a limited number of train-
ing examples. Many image or 3D data regression problems
are invariant to translations and rotations of the input sig-
nal, and vary continuously with small deformations. For
instance, this is the case for visual texture classification on
satellite images, or for the regression physical quantities
such as energies of isolated systems. In this paper we con-
centrate on applications to quantum molecular energy re-
gressions, given the position and charges of the constituent
atoms.

The main difficulty in building translation and rotation in-
variant image representations is to create a sufficiently rich
set of invariants which does not lose important information
and which is stable to small deformations. A small data
deformation should produce a small modification of its in-
variant vector. Fourier transform representations may be
invariant to translations and rotations but are not stable to
deformations at high frequencies. Wavelet scattering rep-
resentations are translation and potentially rotation invari-
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ant representations, which are stable to deformations (Mal-
lat, 2011; Sifre & Mallat, 2013). They are computed by
cascading wavelet transforms and modulus non-linearities,
with a computational architecture similar to a convolutional
neural network. Rotation invariant representations based
on oriented Gabor wavelets have been studied for texture
image analysis (Sifre & Mallat, 2013) and used to regress
quantum energies of planar molecules (Hirn et al., 2016).

For 3D signals, computing scattering coefficients with
oriented wavelets requires calculating a large number of
3D convolutions along orientation angles which uniformly
sample the unit sphere. Such algorithms are computation-
ally expensive. This paper introduces a faster algorithm
based on solid harmonic functions, which are solutions
of Laplace’s equation. Section 2 defines solid harmonic
wavelets by localizing these functions with Gaussian win-
dows. The corresponding wavelet transform is covariant
to translations and rotations, which means that wavelet co-
efficients are translated and rotated when the input sig-
nal is translated and rotated. Section 2.3 explains how
to compute invariant descriptors by summing the modu-
lus of these wavelet coefficients. Scattering coefficients are
higher order invariants obtained by cascading two spherical
harmonic wavelet transform and modulus operators which
suppress their complex phase. This solid harmonic scatter-
ing provides a rich set of translation and rotation invariant
descriptors which are computed with fast algorithms for 2D
and 3D signals.

As a concrete application, this paper concentrates on em-
ploying solid harmonic scattering invariants for the regres-
sion of quantum energies of molecules. Estimating the
ground state energy of atoms and molecules is one of the
most fundamental and most studied topic in computational
quantum mechanics. In principle, molecular energies can
be computed from the atomic configuration by solving the
Schrödinger equation. This is intractable in practise due to
the curse of dimensionality, but it can be shown that all in-
formation pertaining to ground state energy of the molecule
is contained in its 3D electronic density. Approximate
solvers with density functional theory (DFT) are still com-
putationally very intensive, with a polynomial complexity
of order 4 in the number of electrons, which limits the
molecule size and the number of simulations. This has mo-
tivated the study of energy regression with machine learn-
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ing methods, which compute fast regressions from previ-
ous computational results stored in databases. There are
considerable industrial applications for this type of proce-
dure, for the development of fast screening procedures for
chemical, pharmaceutical and materials industries. Section
3 reviews several approaches to attack this problem from a
machine learning perspective (Rupp et al., 2012; Montavon
et al., 2012; Hansen et al., 2015; De et al., 2016). Section
4 explains how to compute regression of quantum energies
of 3D molecules with linear and bilinear regressions from
solid harmonic scattering coefficients. Numerical experi-
ments on the GDB7-12 chemical dataset (see (Rupp et al.,
2012) for a description) are presented in Section 5, with
close to state of the art results.

2. Solid harmonic wavelet scattering
Given an input 2D or 3D signal ρ, we want to compute
a vector of coefficients which are invariant to translations
and rotations of ρ, and which are stable to small deforma-
tions. Our goal is to regress and approximately linearize
functions f(ρ) which are also invariant to translations and
rotations. We use the rotation properties of spherical har-
monics and define appropriate solid harmonic wavelets to
construct such invariants with a scattering transform.

2.1. Solid harmonics in 2D and 3D

Solid harmonics are solutions of Laplace’s equation ∆f =
0, usually expressed in spherical coordinates. In 2D, inter-
preting R2 as the complex plane, we find that z 7→ z` is a
solution for all ` ∈ N due to its holomorphicity2. Express-
ing this solution in polar coordinates gives

(r, ϕ) 7→ r`ei`ϕ,

revealing an `th- order polynomial in radius and a so-called
circular harmonic with ` angular oscillations per circle.

Solving Laplace’s equation in 3D spherical coordinates
(r, ϑ, ϕ) gives rise to spherical harmonics, the eigenvec-
tors of the Laplacian on the sphere. Imposing separability
of azimuthal and elevation contributions yields

Y m` (ϑ, ϕ) = C(`,m)Pm` (cosϑ)eimϕ,

where Pm` is an associated Legendre polynomial and

C(`,m) =
√

(2`+1)(`−m)!
4π(`+m) , for ` ≥ 0 and −` ≤ m ≤ `.

They form an orthogonal basis of L2 functions on the
sphere.

Analogous to the 2D case, 3D solid harmonics are then de-

2Real and imaginary parts of holomorphic functions are har-
monic - their laplacian is 0

fined as

(r, ϑ, ϕ) 7→
√

4π

2`+ 1
r`Y m` (ϑ, ϕ).

2.2. Solid harmonic wavelets

We now define solid harmonic wavelets in 2D and 3D. A
wavelet ψ(u) is a function with zero sum, which is lo-
calized in the sense that it has a fast decay along u. Let
ψj(u) = 2−djψ(2−ju) be a normalized dilation of ψ by 2j

in dimension d. A multiscale wavelet transform of ρ com-
putes convolutions with these dilated wavelets at all scales
2j :

{ρ ? ψj(u)}j∈Z .

If ρ is translated by τ then ρ ? ψj is also translated by τ .
This is a translation covariance property. Let us denote by
ρ̂(ω) the Fourier transform of ρ(u). The Fourier transform
of these convolutions are ρ̂(ω)ψ̂(2jω).

A wavelet is defined from a solid harmonic by multiplying
it by a Gaussian, which localizes its support. In the 2D case

ψ`(r, ϕ) =
1√

(2π)2
e−

1
2 r

2

r` ei`ϕ.

For ` > 0, these functions have zero integrals and are lo-
calized around the origin. In 2D frequency polar coordi-
nates ω = λ (cosα, sinα)T , one can verify that the Fourier
transform of this solid harmonic wavelet is

ψ̂`(ρ, α) = (−i)` e− 1
2λ

2

λ` ei`α.

The solid harmonic wavelet transform inherits the rotation
properties of the solid harmonics. In 2D, the rotation of
a solid harmonic incurs a complex phase shift. Let Rγ ∈
SO(2) be a rotation of angle γ. We first observe that

Rγψj,`(r, ϕ) = ψj,`(r, ϕ− γ) = e−ilγψ(r, ϕ).

One can derive that for any signal ρ rotating the input sig-
nal leads to the same rotation applied to the output times a
phase factor encoding the rotational angle:

Rγρ ? ψj,`(u) = eilγRγ(ρ ? ψj,`)(u).

This phase term is removed by a modulus. It results that the
modulus of wavelet coefficients U [j, `]ρ(u) = |ρ?ψj,`(u)|
is covariant to rotations:

U [j, `]Rγρ(u) = RγU [j, `]ρ(u).

In 3D, wavelet solid harmonics are defined by

ψ`,m(r, ϑ, ϕ) =
1√

(2π)3
e−

1
2 r

2

r` Y m` (ϑ, ϕ).
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Figure 1. Real parts of 2D solid harmonic wavelets ψ`,j(u). The
` parameters increases from 0 to 4 vertically where as the scale
2j increases from left to right. Cartesian slices of 3D spherical
harmonic wavelets yield similar patterns.

We write ψ`,m,j its dilation by 2j . In 3D frequency po-
lar coordinates ω = λ(cosα cosβ, cosα sinβ, sinα)T , its
Fourier transform is

ψ̂`,m(λ, α, β) =
4π(−i)`√

(2π)3
e−

1
2λ

2

λ` Y m` (α, β).

The 3D covariance to rotation is more involved due to the
grouping of rotational subspaces in the spherical harmon-
ics. The asymmetry of the azimuthal and elevation compo-
nents of the spherical harmonics requires them to be treated
differently. In order to obtain a rotation covariance prop-
erty, it is necessary to sum the energy over all m indices.
We shall define the modulus of wavelet spherical harmon-
ics in 3D by

U [`, j]ρ(u) =

( ∑̀
m=−`

|ρ ? ψ`,m,j(u)|2
)1/2

.

Similarly to the 2D case, one can prove that this summation
over m defines a wavelet transform modulus which is co-
variant to 3D rotations. For a general rotation R ∈ SO(3)

U [j, `]Rρ = RU [j, `]ρ.

2.3. Solid harmonic scattering invariants

We showed that a wavelet transform modulus computed
with solid harmonic wavelets is covariant to translations

and rotations in 2D and 3D. One can thus compute a trans-
lation and rotation invariant representation by summing
these coefficients over the spatial variable u at some power
q. Since U [j, `]ρ(u) is obtained by a wavelet scaled by 2j ,
it is a regular function and an approximate sum is obtained
by subsampling u at intervals 2j−α where α is an oversam-
pling factor typically equal to 1. In 2D and 3D we thus
define for any (j1, `1) and exponent q:

S[j1, `1, q]ρ =
∑
u

∣∣∣U [j1, `1]ρ(2j1−αu)
∣∣∣q

Translating or rotating ρ does not modify S[j1, `1, q]ρ. Let
J > 0 denote the number of scales j1, and L > 0 the
number of angular oscillations parameter `1. We choose
q ∈ {1, 2} which yields 2JL invariant coefficients.

The summation eliminates the variability of the
U [j1, `1]ρ(u) along u. A scattering transform computes
complementary invariants by calculating the variations of
U [j1, `1]ρ(u) by retransforming this function of u with
a second wavelet transform modulus operator U [j2, `2]
for different (j2, `2). Since U [j1, `1] and U [j2, `2]
are covariant to translations and rotations, the product
U [j2, `2]U[j1, `1]ρ(u) is also covariant to translations
and rotations of ρ. The variable u can be subsampled at
intervals 2j2−α because of the regularization produced by
the second wavelet transform at the scale 2j2 . Summing
over the subsampled spatial variable u yields another set
of invariants called second order scattering invariants.

S[j1, `2, j2, `2, q]ρ =
∑
u

∣∣∣U [j2, `2]U [j1, `1]ρ(2j2−αu)
∣∣∣q.

The coefficients are computed only for j2 > j1 because
otherwise one can verify (Mallat, 2011) that the ampli-
tude of these invariant coefficients is negligible. The to-
tal number of computed second order invariants is thus
2L2J(J − 1)/2.

Because wavelets are localized and regular functions, the
small deformation of a wavelet defines a similar function.
Besides translation and rotation invariance, one can prove
that a scattering transform is Lipschitz continuous to defor-
mations. This means that if ρ(u) is deformed by a “small”
diffeomorphism applied to u, then the scattering vector is
modified by the addition of an error whose Euclidean norm
is bounded by a constant multiplied by this small ampli-
tude (Mallat, 2011). This property is particularly important
to linearly regress functions which are also stable to defor-
mations.

3. Quantum molecular energy regression
Instead of performing costly ab initio calculations for ev-
ery new molecule, machine learning algorithms compute
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regressions from previously calculated energies which are
stored in databases. The next section describes the invari-
ance and stability properties of a quantum energy func-
tional, and we then review state of the art machine learning
approaches.

3.1. Molecular regression invariances

For quantum energy regression, many invariance and sta-
bility properties of the energy function are known and de-
scribed below.

A molecule containing K atoms is entirely defined by its
nuclear charges zk and its nuclear position vectors rk in-
dexed by k. Denoting by x the state vector of a molecule,
we have

x = {(rk, zk) ∈ R3 × R : k = 1, . . . ,K}.

Since the target value that we are trying to regress is a scalar
representing a physical energy, we know that:

Permutation invariance The energy is invariant to the
permutation of the indexation of atoms in the
molecule.

Isometry invariance The energy is invariant to transla-
tions, rotations, and symmetry of the molecule and
hence to any orthogonal operator.

Deformation stability The energy is differentiable with
respect to the distances between atoms.

Multiscale interactions The energy has a multiscale
structure, with highly energetic covalent bonds be-
tween neighboring atoms, and weaker energetic ex-
changes at larger distances, such as Van-der-Waals in-
teractions.

The deformation stability stems from the fact that a small
deformation of the molecule induces a small modification
of its energy. The primary difficulty is to construct a rep-
resentation which satisfies these four properties, while si-
multaneously containing a rich enough set of descriptors to
accurately regress the atomization energy of a diverse col-
lection of molecules.

Density functional theory (DFT) provides efficient numer-
ical algorithms to compute an approximation of the quan-
tum energies of molecules, with a precision of 1kal to 2kcal
per mol. Hohenberg and Kohn proved in (Hohenberg &
Kohn, 1964) that the molecular energy E can be written as
a functional of the electron density ρ̄(u) ≥ 0 which speci-
fies the density of electronic charge at every point u ∈ R3.
The minimization of E(ρ̄) over a set of electron densities ρ̄
leads to the calculation of the ground state energy

f(x) = E(ρ̄x) = inf
ρ̄
E(ρ̄) . (1)

The functional E is separated into contributions from elec-
tron kinetic energy, electron-nucleus Coulomb attraction,
electron-electron Coulomb repulsion and an exchange-
correlation energy which carries all quantum effects. This
last term is approximted which introduces errors. Solving
the variational problem (1) with this approximate energy
functional is computationally intensive and scales polyno-
mially with an order 4 in the number of electrons.

3.2. Machine Learning State of the Art

In recent years, machine learning methods have gained
considerable traction to estimate quantum molecular ener-
gies. The first approaches used Coulomb matrices, which
encode pairwise nucleus-nucleus repulsion forces for each
molecule (Rupp et al., 2012; Montavon et al., 2012; Hansen
et al., 2013; Montavon et al., 2013). They are then used
to interpolate the target chemical property using e.g. ker-
nel Ridge regression. A drawback of this approach is that
Coulomb matrices are not invariant to permutations of in-
dices of atoms in the molecules, which leads to regression
instabilities, despite the use of stabilization procedures by
perturbing the column norm sorting with random values to
break symmetries (Montavon et al., 2012). On the GDB7-
13 dataset of small molecules (see (Montavon et al., 2013)
for a description) , these methods have achieved a docu-
mented mean absolute error (MAE) atomization energy of
3.07 kcal/mol (Hansen et al., 2013).

Continued development has led to improvements with bag-
of-bonds descriptors (Hansen et al., 2015), which groups
matrix entries according to bond type (GDB7-12 MAE
1.5kcal/mol), or with fixed-length smooth bond-distance
histograms (Collins et al., 2017) (MAE 1.19kcal/mol on
GDB7-12).

Another successful type of descriptors are the smooth over-
lap of atomic position (SOAP) descriptors(De et al., 2016),
which directly compute a similarity kernel measure be-
tween molecules built out of descriptors of the neighbor-
hoods of every atom in the molecule. These achieve an
error rate of 0.92 kcal/mol on GDB7-13. Their inconve-
nience is that they cannot take into account long range in-
teractions.

The abovementioned machine learning algorithms compute
a kernel ridge regression from these descriptors, with a
Gaussian or Laplacian kernel. These kernels induce local
interpolation between training descriptors to predict the tar-
get. As long as the descriptor is powerful enough, increas-
ing amounts of data will improve the predictions, but will
also increase the size of the dual representation and require
each testing point to be compared to every training point
for a prediction. Herein lies a potential drawback of such
non-parametric methods. They do not distill a fixed-size
decision procedure from the available data, which would
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guarantee constant execution time at testing time and be
more amenable to analysis.

Recent deep tensor networks (Schütt et al., 2017) combine
pairwise distance matrix representations with a deep learn-
ing type approach. However, deep networks require large
data bases for training, which are potentially not available
to the desired chemical accuracy.

Gabor wavelet scattering transforms have been applied to
quantum energy regression of planar molecules (Hirn et al.,
2016) because they can define representations which sat-
isfy the invariance and stability properties of molecular en-
ergies given in Section 3.1. At order 1 this is achieved by
averaging over the coefficients extracted at different orien-
tations, which creates an invariant to rotations out of a set
of descriptors that otherwise vary with rotation. At order
2 invariant coefficients are extracted by averaging all cou-
ples of orientations of first layer and second layer wavelet
modulus integrals that are at the same angle to each other.
However, the 3D analog of this approach requires using
many 3D Gabor wavelets whose orientations define a reg-
ular and dense sampling of the unit sphere. It thus has an
important computational complexity which is considerably
reduced by using solid harmonic wavelets.

4. Solid Harmonic Scattering for energy
regression

We study applications of solid harmonic scattering coef-
ficients to regress quantum molecular energies, and show
that this representation approximatively linearizes the en-
ergy. Improved results are obtained with a bilinear fit
which achieves close to state-of-the-art performance on the
GDB7-12 dataset. From a chemical point of view, wavelet
solid harmonics also have similarities with the Gaussian ba-
sis sets typically used in DFT calculations. In DFT, an elec-
tronic density is represented as the square sum of a linear
combination of cartesian versions of Gaussian solid har-
monics centered around the atoms.

4.1. Permutation invariant molecule embeddings

In the spirit of the electron density we create a 3D spatial
embedding of the positional and charge data describing the
molecule x as a sum of non-interacting electronic densities,
creating a zeroth-order approximation of true electron den-
sities in the case it is sufficiently localized. For K atoms
placed at {rk}Kk=1 having charges {zk}Kk=1, input images
take the general form

ρx(r) =

K∑
k=1

c(zk)g(r − rk),

where g is a Gaussian “blob” roughly representing an elec-
tron density localized around the nucleus, and c(zk) is a

vector-valued “electronic channel” function, which can en-
code different aspects of the atomic structure, making them
immediately accessible to the invariant operators. Here we
choose three channels:

1. nuclear charge zk;

2. valence shells vk;

3. core electronic shells zk − vk,

and can thus write c(zk) = (zk, vk, zk−vk)T The molecule
embedding verifies

∫
ρx(u)du =

∑
k(zk, vk, zk − vk)T ,

thus counting the total number of nucleus charges and va-
lence and core electrons. By construction, this approximate
density is invariant to permutations of atom indices k.

4.2. Rotation and translation invariant scattering
descriptors

The molecule representation ρx is invariant to permutations
of atom indices but it is not invariant to isometries (rigid
body transformations lead to density in different positions),
nor does it separate scales. These missing invariances and
the separation of scales into different channels are obtained
by computing its scattering representation with solid har-
monic wavelets.

Letting J ∈ N be the number of scales and L ∈ N the
maximal spherical harmonic order, we extract

S[j1, `1, q]ρx and S[j1, `1, j2, `2, q]ρx

For j1, j2 ∈ {0, . . . , J − 1} with j1 < j2 and `1, `2 ∈
{0, . . . , L−1} and q ∈ {1, 2}. The relation of the exponent
with chemical properties has been shown in (Hirn et al.,
2016): The electron-electron Coulomb repulsion term can
be recovered from wavelet modulus integrals of the true
electron density using q = 2. Adding q = 1 adds a term
that is approximately linear in number of charges modulo
destructive interferences of wavelets that occur when the
support of one wavelet scale covers several atoms.

4.3. Regressions on invariant descriptors

Let p = (j1, `1, q) or p = (j1, `1, j2, `2, q) be a multiindex
that enumerates all valid scattering paths. The last machine
learning step is a supervised regression of quantum energy
from Sρ = {S[p]ρx}p, given a training data base. The goal
is to establish a link between the extracted invariants and
the predictive target, the atomization energy. We show here
that solid harmonic scattering invariants of ρx linearize the
atomization energy by expressing it as a linear combination
thereof.

f̃(x) = Ẽ(ρx) = b+ 〈Sρx, w〉 (2)
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We use Ridge regression to fit the linear model on the scat-
tering coefficients. Ridge regression weights are the solu-
tion of

argminw
1

2N

N∑
n=1

(En − b− 〈Sρxn
, w〉)2

+
λ

2
‖w‖2

Extending this affine function to a quadratic permits pair-
wise multiplicative interactions between invariants and can
be seen as the creation of new linearizing features:

Ẽ(ρx) = b+ 〈Sρx, w〉+ 〈Sρx,WSρx〉

We fit a quadratic functional to the regress the energies
from the scattering coefficients, which we frame as a bilin-
ear neural network with multiplicative gating units (Memi-
sevic & Hinton, 2010).

For a generic vector s ∈ Rd and i ∈ {1, 2} (indexing either
side of a bilinear product), let

hi(s) = bi +W is.

Further, let

G(s) = b+ 〈h1
k(s), Dh2

k(s)〉,

where D = diag(d) is a diagonal matrix, with the entries
d ∈ Rκ. This structure makes the estimation of any in-
homogeneous polynomial of order 2 theoretically possible.
We fit this network to the target energy by minimizing a
mean squared error loss using stochastic gradient descent:

argminW 1,W 2,d,b1,b2,b

N∑
n=1

(En −G(Sρxn))
2

5. Numerical Experiments on Chemical
Databases

We performed atomization energy regression on the
GDB7-12 molecules dataset, consisting of 7165 molecules
of up to 23 atoms among H, C, O, N and S. They are max-
imally around 10Å long. We performed rigid affine coor-
dinate transforms to align each molecule with its principle
axis, making it possible to fit every molecule in a box of
dimensions 12.8Å×9.6Å×6.4Å. We discretize this space
by creating a grid of stepsize 0.1333.The Gaussians g(r)
have small widths on the order of the grid step (σ = 0.1Å),
in order to interpolate between grid points in case the po-
sition does not fall exactly onto a grid point. Each Gaus-
sian is renormalized to sum to exactly c(zi) before sum-
ming all Dirac contributions to obtain a multi-channel den-
sity image. c is chosen to represent full nucleus as well as
valence and core electronic charges. Density images are

Figure 2. Solid harmonic wavelet moduli of a molecule. The
interference patterns at the different scales are reminiscent of
molecular orbitals obtained in e.g. density functional theory.

padded with zeros in order to be able to perform convo-
lutions in Fourier space. After this operation, each den-
sity image is a multidimensional numerical array of size
3 × 144 × 144 × 96, where the first dimension indicates
the input channel. Solid harmonic wavelets are chosen for
l ∈ {0, 1, 2, 3} and σ = 2−J+1.

We extract the solid harmonic wavelet invariants using
GPUs. When appropriate (permitted by the filter band-
width), the wavelet modulus images are subsampled to a
lower resolution in order to speed up calculations.

Discrete grids introduce sampling errors which are coun-
tered by data augmentation.

5.1. Results

The resulting representation is used to fit a linear model
using ridge regression (λ = 10−10 fixed) and a bilinear
(gating) neural network as described in section 4.3. For
the linear model (L-Scat), we standardize the data to be
mean free and unit variance. The average of the mean ab-
solute error (MAE) over 5 folds of the for both first and
second order coefficients is 2.2 kcal/mol. Similarly, for the
bilinear model (B-Scat), we standardize the coefficients to
be mean free and unit variance. Additionally, we perform
dimensionality reduction and whitening of the data set us-
ing principle component analysis while retaining 50% of
the dimensions of the invariant representation. The aver-
age validation error, in terms of mean absolute error, over
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RSCM BoB SOAP DTN CBoB L-Scat B-Scat
MAE 3.1 1.5 0.9 1 1.2 2.2 1.2

Table 1. Comparison of solid harmonic invariant regression with
related work. (RSCM: Random Sorted Coulomb Matrix, BoB:
Bag of Bonds, SOAP: smooth overlap of atomic positions, DTN:
deep tensor networks, CBoB: Continuous bag of bonds, L-Scat:
solid harmonic invariants followed by ridge regression, B-Scat:
solid harmonic invariants followed by quadratic regression

5 data folds is 1.2kcal/mol.

Comparing to the succession of state-of-the-art methods
described in table 1, both the linear and the bilinear re-
gressions on solid harmonic scattering invariants lie in the
same performance regime, with mean absolute error of 1.2
and 2.2 kcal/mol respectively. It should be noted that these
are preliminary results obtained with little to no parameter
tuning.

5.2. Discussion

While drawbacks of computational intensity are largely
mitigated by the employment of GPUs, the method we pro-
pose has a number of advantages with respect to existing
approaches. Compared to Coulomb matrix approaches it is
guaranteed to be perfectly invariant to atom indexing and
thus stable with respect to small deformations, which can
cause a switch in column ordering in Coulomb matrices.
Furthermore, similarly to (Collins et al., 2017), our ap-
proach provides constant size descriptors that do not scale
quadratically in dimensionality with the size of the largest
molecule. The SOAP similarity measure (De et al., 2016)
is at least linear in atom number due to the comparison of
all atomic neighborhoods. Our approach scales logarith-
mically with the size of the molecule, due to potentially
larger box size to fit them. Finally, compared to deep ten-
sor networks, which propose the learning of many parame-
ters, here we create a powerful neural-network-type repre-
sentation but with predefined and fixed filters. Since they
linearize the predictive target of atomization energy, coef-
ficients of learned models become interpretable and can be
studied as to their role in describing molecular energies.

Introducing multiplicative interactions between solid har-
monic wavelet invariants further improves the performance
on the energy regression task, achieving near state of the art
performance. In fact, the bilinear neural network on scat-
tering coefficients likely proposes the only domain agnostic
method with this level of accuracy.

6. Conclusion
We have presented a general method to extract rotation and
translation invariant descriptors from 2D and 3D images.
We use wavelet transform modulus integrals and second

order scattering invariants with solid harmonic wavelets,
which we introduce. Translation invariance is guaranteed
by the spatial convolution operator. Rotation invariance is
due to the specific design of the wavelets.

We show that solid harmonic wavelet scattering can be ap-
plied successfully to 3D quantum chemical energy regres-
sion problems. Molecular properties are independent of
position and orientation of the molecule. Solid harmonic
scattering invariants are shown to linearize this energy. Fur-
ther, pairwise multiplicative interactions between solid har-
monic scattering invariants permit close to state-of-the-art
error rates.

Up to now, no optimization of the filters has been at-
tempted. Recently, a 2D harmonic network, in which the
radial part of the filters was learned, has been introduced
for image classification (Worrall et al.). This approach can
be introduced into the representation presented here, yield-
ing flexibility of wavelet shape while retaining the invari-
ance property.

References
Collins, Christopher R., Gordon, Geoffrey J., von Lilien-

feld, O. Anatole, and Yaron, David J. Constant size
molecular descriptors for use with machine learning.
arXiv, 2017.

De, Sandip, Bartk, Albert P., Csnyi, Gbor, and Ceriotti,
Michele. Comparing molecules and solids across struc-
tural and alchemical space. Phys. Chem. Chem. Phys.,
18(20):13754–13769, 2016. ISSN 1463-9084. doi:
10.1039/C6CP00415F.

Hansen, Katja, Montavon, Grégoire, Biegler, Franziska,
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Hirn, Matthew, Mallat, Stéphane, and Poilvert, Nicolas.
Wavelet scattering regression of quantum chemical en-
ergies. arXiv, 2016.

http://dx.doi.org/10.1021/acs.jpclett.5b00831
http://dx.doi.org/10.1021/acs.jpclett.5b00831


Solid Harmonic Wavelet Scattering for Molecular Energy Regression

Hohenberg, P. and Kohn, W. Inhomogeneous electron gas.
Phys. Rev., 136:B864–B871, Nov 1964. doi: 10.1103/
PhysRev.136.B864. URL http://link.aps.org/
doi/10.1103/PhysRev.136.B864.
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