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Abstract

We prove that the singular set of a harmonic map from a smooth
Riemannian domain to an NPC Riemannian DM-complex is of Haus-
dorff codimension at least two. This generalizes results of Gromov-
Schoen on harmonic maps into F-connected complexes and includes
many interesting target spaces, for example hyperbolic buildings, not
covered by Gromov-Schoen. We also explore other interesting prop-
erties of harmonic maps to DM-complexes like monotonicity formulas
and an order gap theorem for approximately harmonic maps.

1 Introduction

Harmonic map theory from Riemannian domains to singular spaces origi-
nate with the work of Gromov-Schoen [GS] and was subsequently extended
in [KS1] [KS2] and [J]. The motivating question comes from the study of
superrigidity of group representations. Let Γ be a fundamental group of a
manifold M acting on a metric space Y by a representation ρ : Γ → Isom(Y ).
Suppose that associated with the action ρ, there is an equivariant harmonic
map ũ : M̃ → Y where M̃ is the universal cover of M . Under appropriate
curvature assumptions on the domain and the target spaces one would like
to show that the map ũ is totally geodesic or even constant, thus implying
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the rigidity of the representation ρ. This is the famous Bochner method and
in the case when Y is a smooth manifold it has been extensively used by
many authors (cf. for example, [Si], [C], [JY] and [MSiY] among others).
Recall, that the Bochner formula is a differential equation involving higher
derivatives of the map and relies on the smooth structure of the Riemannian
manifolds involved. Therefore, in order to utilize it in the singular setting the
key is to show that harmonic maps into singular spaces are regular enough
on a big open set.

In the seminal work of Gromov and Schoen [GS], it is shown that this is
in fact the case when the target space is an F-connected simplicial complex.
Roughly speaking, an F-connected complex is a k-dimensional Euclidean
complex where any two adjacent simplices lie on a flat, i.e. an image of the
Euclidean space Rk isometrically embedded in the complex. Examples of
F-connected complexes are Euclidean buildings. In doing so, Gromov and
Schoen showed that rank 1 superrigidity extends to the non-Archimedean
case generalizing the Archimedean superrigidity result of Corlette [C].

More precisely, the main technical result of [GS] is to show that a har-
monic map u from a smooth Riemannian domain Ω to a k-dimensional F-
connected complex Y locally maps into a Euclidean space outside a set of
codimension at least 2, or in other words that the singular set S(u) of u is
at least of Hausdorff codimension 2. This is enough to justify the Bochner
formula. To investigate the singular points, they show the existence of the
order function associated with a harmonic map. For example, for a harmonic
function u : Ω → R, the value of the order function Ord(x) is the order with
which u attains its value u(x) at x, or alternatively, it is the degree of the
dominant homogeneous harmonic polynomial which approximates u − u(x)
near x.

In this paper, we extend the result of [GS] to NPC (non-positively curved)
complexes that are not necessarily Euclidean. Such complexes can have ar-
bitrary Riemannian metrices but we assume that they are DM-connected in
the sense that any two adjacent simplices lie in a DM, an image of a differ-
entiable manifold isometrically embedded in Y . Examples of such complexes
are of course Euclidean and hyperbolic buildings. The main theorem of the
paper can be stated as follows

Theorem 1 (Main Theorem) Let Ω be an n-dimensional Riemannian do-
main, Y a k-dimensional NPC DM-complex and u : Ω → Y a harmonic map.
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Then the singular set S(u) of u has Hausdorff co-dimension 2 in Ω; i.e.

dimH(S(u)) ≤ n− 2.

A harmonic map u : Ω → Y into a k-dimensional DM-complex can be
written locally near a singular point x ∈ S(u) as u = (V, v) where V is the
non-singular component map that maps into a Euclidean space Rj and v is
the singular component map that maps into a lower dimensional complex
Y k−j

2 . We partition S(u) as
⋃Sj(u) where j indicates the dimension of the

target space Rj of V . When the target space Y is an F-connected complex,
u maps into the product of Rj and Y k−j

2 and both components V and v
are harmonic maps. Therefore, the analysis of the singular set of u can be
inductively reduced to the study of the singular set of v which maps into a
lower dimensional complex. This is in fact how it is argued in [GS]. In the
case when the target space is a general DM-complex, u locally maps into the
twisted product of Rj and Y k−j

2 which we denote by (Rj × Y k−j
2 , G). The

maps V and v are thus only approximately harmonic. More significantly, the
map v is the non-dominant term of u = (V, v) and this presents the major
technical difficulty of the paper. In analyzing the singular set of v, we prove
a general monotonicity formula to deduce the existence of the order function
and the order gap theorem for the approximate case. Here we summarize
our results:

Theorem 2 (The Order of the Singular Component) Let Ω be an n-
dimensional Riemannian domain, Y a k-dimensional NPC DM-complex, u :
Ω → Y a harmonic map and j = 0, . . . , k0 := min{n, k}. If x0 ∈ Sj(u) and
u = (V, v) : Ω → (Rj × Y k−j, G) near x0, then

Ordv(x0) = lim
σ→0

Ordv(x0, σ) = lim
σ→0

σEv
x0

(σ)

Ivx0
(σ)

exists.

Theorem 3 (The Gap Theorem) Under the same assumption as Theo-
rem 2, let Ω0 be a compactly contained subset of Ω. Then, there exists ε0 > 0
such that Ordv(x0) ≥ 1 + ε0 for all x0 ∈ Sj(u) ∩ Ω0.

By applying the above theorem for the case of higher order points (i.e. j =
0), we obtain the following generalization of the ε-gap theorem of Gromov-
Schoen for DM-omplexes (cf. Theorem 6.3 of [GS]).
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Corollary 4 Let Ω be a Riemannian domain, Y an NPC DM-complex, u :
Ω → Y a harmonic map and Ω0 a compactly contained subset of Ω. There
exists ε0 > 0 such that if x ∈ Ω0, then either Ordu(x) = 1 or Ordu(x) ≥ 1+ε0.

In the follow-up article [DMV], we will show how to employ our main
theorem in order to prove superrigidity for representations of lattices into
new classes of groups not covered by [GS], for example isometry groups of
hyperbolic buildings.

Acknowledgement This work was partially completed at the Max Planck
Institute of Mathematics in Bonn. The authors would like to thank the
Institute for their hospitality and generous support.

2 Harmonic maps into NPC spaces and DM-

complexes

Recall that a metric space (Y, d) is called an NPC space if:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q in Y , there exists a rectifiable curve c so that the length of c is equal to
d(P,Q). We call such distance realizing curve a geodesic.

(ii) For any three points P,R,Q ∈ Y , let c : [0, l] → Y be the arclength
parameterized geodesic from Q to R and let Qt = c(tl) for t ∈ [0, 1]. Then

d2(P,Qt) ≤ (1− t)d2(P,Q) + td2(P,R)− t(1− t)d2(Q,R).

In particular, if Y is an NPC space then between any two points Q and R
the geodesic c : [0, 1] → Y between them is unique. We use the notation

Qt =: (1− t)Q+ tR. (1)

We now define the notion of energy of a map to an NPC space Y . Let Ω
be a smooth bounded n-dimensional Riemannian domain. A map f : Ω → Y
is said to be an L2-map (or that f ∈ L2(Ω, Y )) if for some (and hence all)
P ∈ Y , we have ∫

Ω
d2(f(x), P )dµ <∞.
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For f ∈ L2(Ω, Y ), define eε : Ω → R by

eε(x) =


∫
y∈∂Bε(x)

d2(f(x), f(y))

ε2
dΣ for x ∈ Ω−Nε(∂Ω)

0 for x ∈ Nε(∂Ω)

where Nε(∂Ω) = {x ∈ Ω : d(x, ∂Ω) < ε}. Define a family of functionals

Ef
ε : Cc(Ω) → R

by setting

Ef
ε (ϕ) =

∫
Ω
ϕeεdµ.

We say f has finite energy (or that f ∈ W 1,2(Ω, Y )) if

Ef := sup
ϕ∈Cc(Ω),0≤ϕ≤1

lim sup
ε→0

Ef
ε (ϕ) <∞.

It can be shown that if f has finite energy, then the measures eε(x)dx converge
as measures to a measure absolutely continuous with respect to the Lebesgue
measure. Therefore there exists a function e(x), which we call the energy
density, such that eε(x)dµ ⇀ e(x)dµ. In analogy to the case of real valued
functions, we write |∇f |2(x) in place of e(x). In particular,

Ef =
∫
Ω
|∇f |2dµ.

If f ∈ W 1,2(Ω, Y ), then there exists a well-defined notion of a trace of
f , denoted Tr(f), which is an element of L2(∂Ω, Y ). Two maps f, g ∈
W 1,2(Ω, Y ) have the same trace (i.e. Tr(f) = Tr(g)) if and only if d(f, g) ∈
W 1,2

0 (Ω). For details we refer to [KS1]. In the sequel, given x ∈ Ω and f as
above we will use the following notation

Ef
x (σ) :=

∫
Bσ(x)

|∇f |2dµ and Ifx (σ) :=
∫
∂Bσ(x)

d2(u, u(x))dΣ(x).

Definition 5 A map u : Ω → Y to an NPC space Y is said to be harmonic
if it is energy minimizing among all W 1,2-maps with the same boundary con-
dition.
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The following regularity theorem is due to Gromov and Schoen [GS] and
Korevaar and Schoen [KS1].

Theorem 6 A harmonic map u : Ω → Y to an NPC space Y is locally
Lipschitz continuous with the local Lipschitz constant dependent only on the
energy of u, the dimension of Ω, the regularity of the metric g of Ω and the
distance to the boundary of Ω.

Let u : Ω → Y be a harmonic map. By Section 1.2 of [GS], there exists
a constant c > 0 depending only on the C2 norm of the metric on Ω (in
particular c = 0 when Ω is Euclidean) such that

σ 7→ Ordu(x, σ) := ecσ
2 σ Eu

x(σ)

Iux (σ)

is non-decreasing for any x ∈ Ω. As a non-increasing limit of continuous
functions,

Ordu(x) := lim
σ→0

Ordu(x, σ)

is an upper semicontinuous function. By following the proof of Theorem 2.3
in [GS], we see that Ordu(x) ≥ 1. The value Ordu(x) is called the order of
u at x.

Fix x0 ∈ Ω and choose a normal coordinate system centered at x0. With-
out a loss of generality, we may write x0 = 0 and assume B1(0) is contained
in the normal neighborhood. Set α := Ordu(0).

By Section 1.3 of [GS], there exists a constant c > 0 such that

σ 7→ ecσ
2 Iu0 (σ)

σn−1+2α

is monotone non-decreasing. Thus, if we set

µσ =

√
Iu0 (σ)

σn−1

we see that
lim
σ→0

µσ = 0. (2)

For µ > 0, let µ−1Y be the metric space (Y, µ−1d). Set gσ(x) = g(σx)
and define

uσ : Bσ−1(0) → µ−1
σ Y
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by setting
uσ(x) = u(σx).

By following Section 3 of [GS], we see that uσ is a harmonic map with
Euσ

0 (1) ≤ 2α and Iuσ
0 (1) = 1. Let g(0) be the Euclidean metric defined

by the value of g at 0. By Theorem 2.4.6 of [KS1], uσ has a uniform modulus
of continuity on compact sets independent of σ (with respect to the metric
g(0) on the domain which is uniformly equivalent to gσ for σ small). By
[KS2], Proposition 3.7 and a diagonalization argument there exists σi → 0
and a map u∗ : Rn → Y∗ into an NPC space such that uσi

converges to u∗
uniformly in the pull-back sense on every compact set. By (a slight modifi-
caiton of) the L2 trace theorem of [KS1], Theorem 1.12.2 and the fact that
Iuσ
0 (1) = 1, we have that u∗ is non-constant. Furthermore, by [KS2] Proposi-

tion 3.11 the energy of uσi
converges to u∗ on compact subsets of B1(0) and

u∗ is an energy minimizer again on compact subsets. We claim that u∗ is an
energy minimizer on B1(0). Indeed, if w : (B1(0), g(0)) → Y∗ is an energy
minimizing map with w|∂B1(0) = u∗|∂B1(0), then Lemma 2.4.3 [KS1] implies

that d2(u∗, w) is weakly subharmonic and hence u∗ = w on B1(0). Finally
u∗ is instrinsically homogeneous degree α, i.e.

d(u∗(tx), u∗(0)) = tαd(u∗(x), u(0)) for 0 ≤ t ≤ 1, x ∈ Rn

by the same argument as in [GS] Proposition 3.3. Variations of the above
argument will be used throughout the paper. Notice that in the above we do
not need Y to be locally compact. In the case when Y is a locally compact
simplicial complex, which is the main interest of this paper, the construction
follows immediately from [GS] Proposition 3.3.

We now specialize our space Y to be in a special class of cell complexes.

Definition 7 Let Ed be an affine space. A convex piecewise linear polyhedron
S with interior in some Ei ⊂ Ed is called a cell. We will use the notation Si to
indicate the dimension of S. A convex cell complex or simply a complex Y in
Ed is a finite collection F = {S} of cells satisfying the following properties:
(i) the boundary ∂S of Si ∈ F is a union of T j ∈ F with j < i (called
the faces of S) and (ii) if T j, Si ∈ F with j < i and Si ∩ T j 6= ∅, then
T j ⊂ Si. For example a simplicial complex is a cell complex whose cells are
all simplices. We will denote by Y (i) the i-dimensional skeleton of Y , i.e.
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the union of all cells Sj where j ≤ i. Y is called k-dimensional or simply a
k-complex if Y (k+1) = ∅ but Y (k) 6= ∅.

Definition 8 A complex Y along with a metric G = {GS} is called a Rie-
mannian complex if each cell S of Y is equipped with a smooth Riemannian
metric GS such that for each cell S, the component functions of GS extend
smoothly all the way to the boundary of S. Furthermore, if S ′ is a face of S
then the restriction GS to S ′ is equal to GS′ and S ′ is totally geodesic in S.

Throughout this paper, all cell complexes will have the additional prop-
erty that all cells are bounded unless otherwise specified. If this is not the
case, then we will write unbounded cell complex. Additionally, all cell com-
plexes Y will be locally compact, Riemannian and NPC with respect to the
distance function d induced from GS.

Definition 9 We say a k-dimensional Riemannian complex (Y,G) is a DM-
complex if given any two cells S1 and S2 of Y such that S1 ∩ S2 6= ∅, there
exists a k-dimensional C∞-differentiable complete Riemannian manifold M
and an isometric and totally geodesic embedding J : M → Y such that
S1 ∪ S2 ⊂ J(M). By an abuse of notation, we will often denote J(M) by M
and call it a DM (short for Differentiable Manifold).

Remark. If Y is a Euclidean complex and we require that all the DM’s to
be isometric to a k-dimensional Euclidean space, then Y is F-connected in
the sense of [GS], Section 6.1.

Recall that for an arbitrary NPC space Y and a point P ∈ Y , the Alexan-
drov tangent cone T PY of Y at P is the cone over the space of directions
Π. Here Π is the completion of the space of equivalence classes of geodesics
emanating from P along with the distance function defined by the angle at P
where γ1 ∼ γ2 if the angle between them is equal to zero. For a DM-complex
Y , let C denote the tangent cone of Y at the point P as defined in [Fe] 3.1.21.
Clearly, C is an unbounded cell complex and TPY is isometric to (C,G(P ))
where G(P ) is the metric defined by the value of G at P . Notice that if
P,Q ∈ int(S), then C for P and Q is the same set. Since Y is piecewise
smooth, we can consider the exponential map

expYP : Br(0) ⊂ TPY → Br(P ) ⊂ Y
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defined by piecing together the exponential maps defined on each cell contain-
ing P . This is equivalent to the exponential map defined from Alexandrov
tangent cone point of view, i.e. given a unit speed geodesic γ and t ∈ [0,∞),
expYP (γ, t) = γ(t).

If M is a DM passing through P then define FM = TPM ⊂ C. An
immediate consequence is the following.

Lemma 10 If M is a DM in (Y,G), then FM is a flat in (C,G(P )) = TPY .
In particular, if Y is a DM-complex, then TPY is F-connected in the sense
of [GS].

The next Lemma will be used in the sequel.

Lemma 11 Let Y be a DM-complex, u : Ω → Y a harmonic map and
u∗ : (B1(0), g(x0))) → Y∗ a tangent map of u at a point x0 ∈ Ω. Then Y∗ is
isometrically contained in (C,G(u(x0))) = Tu(x0)Y.

Proof. Again we will choose normal coordinates around x0 and identify
x0 = 0. Recall that by definition, the tangent map u∗ is the limit (in the
pullback sense as in [KS2] Section 3) of the maps uσi

: B1(0) → (C, µ−1
σi
d)

where uσi
(x) = u(σix). Consider the maps µσi

−1uσi
: B1(0) → (C,Gσi

)
where Gσi

(y) = G(µσi
y). The two points of view are equivalent in the sense

that the induced pullback pseudodistances on B1(0) are the same. Therefore
we will work instead with the second point of view. The smoothness of the
metric G implies that Gσi

converges uniformly to the metric G(u(0)). Again,

since µσi
−1uσi

have uniformly bounded energy E
µσi

−1uσi
0 (1) and uniformly

bounded I
µσi

−1uσi
0 (1), we obtain by Theorem 2.4 of [GS] and the Arzela-

Ascoli theorem that µσi
−1uσi

converge uniformly on compact sets to a limit
map u0 : (B1(0), g(0)) → (C,G(u(0))), which by the equivalence of the two
points of view it must be equal to the tangent map u∗. q.e.d.

3 Regular and Singular points

As in the previous section, let Ω be an n-dimensional Riemannian domain
and (Y,G) a k-dimensional NPC DM-complex.
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Definition 12 Let u : Ω → Y a harmonic map. A point x0 ∈ Ω is called a
regular point if ordu(x0) = 1 and there exists σ0 > 0 such that

u(Bσ0(x0)) ⊂ expYu(x0)(X0), (3)

where X0 ⊂ Tu(x0)Y is isometric to Rk. In particular, x0 has a neighborhood
mapping into a DM. A point x0 ∈ Ω is called a singular point if it is not a
regular point. Denote the set of regular points by R(u) and the set of singular
points by S(u).

Definition 13 Let u : Ω → Y a harmonic map. Let

S0(u) = {x0 ∈ Ω : Ordu(x0) > 1}.

Let k0 := min{n, k} and Sj(u) = ∅ for j /∈ {1, . . . , k0}. For j = 1, . . . , k0,
we define Sj(u) inductively as follows. Having defined Sm(u) for m = j +
1, . . . , k0 + 1, define Sj(u) to be the set of points

x0 ∈ S(u)\

 k0⋃
m=j+1

Sm(u) ∪ S0(u)


with the property that there exists σ0 > 0 such that

u(Bσ0(x0)) ⊂ expYu(x0)(X0) (4)

where X0 ⊂ Tu(x0)Y is isometric to Rj × Y k−j
2 and Y2 is (k− j)-dimensional

F-connected complex. Set

S−m(u) =
m⋃
j=0

Sj(u) and S+
m(u) =

k⋃
j=m

Sj(u).

Lemma 14 The sets S0(u), S1(u), ..., Sk0−1(u), Sk0(u) form a partition of
S(u).

Proof. By definition, S0(u), . . . , Sk0(u) are mutually disjoint sets. Let
x0 ∈ S(u). If Ordu(x0) > 1, then x0 ∈ S0(u). If Ordu(x0) = 1, then
the tangent map u∗ : Rn → Tu(x0)Y at x0 is a homogeneous degree 1
map and maps onto a flat F0 ⊂ Tu(x0)Y by Proposition 3.1 of [GS]. Let
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X0 be the union of all k-flats containing F0. By Lemma 6.2 of [GS], X0

is isometric to Rj × Y k−j
2 where j ∈ {1, . . . , k0} is the dimension of F0.

Furthermore, by the same lemma, u∗ is effectively contained in X0. Since
supBr(x0) d(u, expYu(x0) ◦u∗ ◦ (expΩ

x0
)−1) → 0 as r → 0, this implies by Theorem

5.1 of [GS] that x0 ∈ S+
j (u) and hence x0 ∈ Sm(u) for some m ∈ {j, . . . , k0}.

q.e.d.

Lemma 15 The sets R(u), R(u) ∪ S+
m(u) are open and the sets S−m(u) are

closed.

Proof. Clearly R(u) and R(u) ∪ S+
0 (u) = Ω are open. Now assume

m > 0 and x0 ∈ S+
m(u). Thus, x0 ∈ Sj(u) for an integer j ≥ m, hence

Ordu(x0) = 1 and there exists σ0 > 0 such that u(Bσ0(x0)) ⊂ expYu(x0)(X0)

where X0 is isometric to Rj × Y k−j
2 . Thus, x ∈ Bσ(x0) implies x ∈ S l(u) ∪

R(u) for some l ∈ {j, . . . , k0}, i.e x ∈ S+
m(u)∪R(u). This shows S+

m(u)∪R(u)
is open which in turn this implies S−m(u) = Ω\(S+

m+1(u) ∪ R(u)) is closed.
q.e.d.

4 Near a singular point x ∈ Sj(u) where j > 0

Let u : Ω → (Y,G) be a harmonic map and x? ∈ Sj(u), j > 0. As a degree
1 homogeneous map, the tangent map u∗ : Rn → (C,G(u(x?))) at x? is
effectively is contained in a subcomplex isometric a product Rj × Y k−j

2 of
Euclidean space Rj and an (k−j)-dimensional F-connected complex Y2 with
a single vertex P0 by [GS] Lemma 6.2. For convenience, identify Rj × Y k−j

2

with its isometric image in (C,G(u(x?))). Note then that Rj × Y k−j
2 is the

union of all k-flats containing the j-flat Rj × {P0} (cf. [GS] Lemma 6.2)
which we write as

Rj × Y k−j
2 =

L⋃
i=1

Fi. (5)

Conversely, every k-flat of Rj × Y k−j
2 is one of {Fi}Li=1. To see this, note

that if F is a k-flat in Rj × Y k−j
2 then π1(F ) and π2(F ) are flats in Rj and

Y k−j
2 respectively where π1 and π2 are the projections onto the two factors

Rj and Y k−j
2 . Since dim(π1(F )) + dim(π2(F )) = dim(F ) = k, we necessarily
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have dim(π1(F )) = j and dim(π2(F )) = k − j. Thus π1(F ) = Rj and, since
Rj × Y k−j

2 is a cone (as an image of the homogeneous map u∗), π2(F ) must
contain the point P0. This implies that F contains the j-flat Rj × {P0}.

The metric G(u(x?)) restricted to Rj × Y k−j
2 is a product metric which

we write as H × h. In particular, (Rj, H) is a Euclidean space and (Y k−j
2 , h)

is a (k− j)-dimensional F-connected NPC complex as in [GS]. Consider the
metric defined in a neighborhood U of u(x?) in Rj × Y k−j

2 by pulling back
the metric G via the map expYu(x?) and denote it G by an abuse of notation.
Then (U ∩ Fi, G|U∩Fi

) is a k-dimensional differentiable manifold for any Fi
as in (5). Conversely, if (V,G|V ) is a k-dimensional differentiable manifold
where u(x?) ∈ V ⊂ U , then (V,G(u(x?))) is isometric to a k-dimensional
Euclidean domain and hence V ⊂ Fi. We extend G to all of Rj × Y k−j

2

so that the elements of {(Fi, G|Fi
)} are the DM’s of (Rj × Y k−j

2 , G). Then

(Rj ×Y k−j
2 , G) is a DM-connected complex and every DM of (Rj ×Y k−j

2 , G)
has the form M = (Fi, G|Fi

) for Fi.
Since we are only interested in the local properties of u, in this section as

well as in the sections that follow, we will consider a harmonic map

u : (Bσ?(x?), g) → (Rj × Y k−j
2 , G) (6)

with

V := π1 ◦ u : Bσ?(x?) → Rj and v := π2 ◦ u : Bσ?(x?) → Y k−j
2 .

We note that v(x) = P0 for any x ∈ Sj(u).

Lemma 16 Let u∗ : (B1(0), g(0)) → (Rj × Y k−j
2 , G(x)) be a tangent map of

u at x ∈ Sj(u). Then v∗ := π2 ◦ u∗ = 0.

Proof. Assume on the contrary that v∗ 6= 0. Since u∗ is a homogeneous
degree 1 map, so is v∗. Thus v∗ maps into a flat F0 of Y k−j

2 by Propo-
sition 3.1 of [GS]. Let X0 be the union of all (k − j − l)-flats containing
F0 where l is the dimension of F0. By Lemma 6.2 of [GS], X0 is isometric
to Rj+l × Zk−j−l

2 and u∗ is effectively contained in Rj+l × Zk−j−l
2 . Since

supBr(x) d(u, expYu(x) ◦u∗ ◦ (expΩ
x )−1) → 0 as r → 0, this implies that x ∈ S+

j+l

by Theorem 5.1 of [GS] which contradicts that x ∈ Sj(u). q.e.d.

12



Lemma 17 Let η ∈ C∞
c (Bσ?(x?)). Considering v as a map into the NPC

space (Y k−j
2 , h), set

vη(x) = (1− η(x))v(x) + η(x)P0 and uη = (V, vη).

Then
|∇u|2(x) = |∇uη|2(x), a.e. x ∈ Sj(u).

Furthermore,

|∇v|2(x) = |∇vη|2(x) = 0, a.e. x ∈ Sj(u);

in other words, the energy density functions of v and vη as maps into (Y k−j
2 , h)

agree on Sj(u).

Proof. Let ι : (Rj × Y k−j
2 , G) ↪→ RN be an isometric embedding. Let

x0 ∈ Sj(u) be a Lebesgue point of

|∇(ι ◦ (V, P0))|2 =
∑
α,β

gαβ <
∂(ι ◦ (V, P0))

∂xα
,
∂(ι ◦ (V, P0))

∂xβ
>

and

|∇(ι ◦ u)|2 =
∑
α,β

gαβ <
∂(ι ◦ u)
∂xα

,
∂(ι ◦ u)
∂xβ

> .

Furthermore, since ι ◦ u : Bσ(x0) → RN and ι ◦ (V, P0) : Bσ(x0) → RN are
Lipschitz by Theorem 6 and hence differentiable a.e., we can assume

∂(ι ◦ u)
∂xα

(x0) and
∂(ι ◦ (V, P0))

∂xα
(x0) exist ∀α = 1, . . . , n.

Using normal coordinates, identify x0 = 0 and let gσ(x) = g(σx). Fur-
thermore, we can assume that ι ◦ u(0) = 0 ∈ RN . By pulling back the
metric G to T0(ι(R

j × Y k−2
2 )) ⊂ RN via the map exp0 ◦ι, we can define a

metric near the vertex which we call G again by an abuse of notation. Define
Gσ(y) = µ−1

σ G(y) and note that Gσ converges uniformly on every compact
set to the metric G(0). Note that G(0) is the restriction of the standard inner
product < ·, · > of RN to T0(ι(R

j × Y k−j
2 )). Since T0(ι(R

j × {P0})) is a j-
dimensional linear space in RN , by rotating if necessary, we may assume it to
be equal to the first factor Rj of Rj×RN−j = RN . We use V̂ = (V̂ 1, . . . , V̂ j)
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and v̂ = (v̂1, . . . , v̂N) as coordinates of Rj ×RN−j. Let π̂1 and π̂2 denote the
orthogonal projections with respect to the metric G(0) onto the subspaces
Rj and RN−j respectively of RN . Using this, we can write

û := exp−1
0 ◦ι ◦ u = (V̂ , v̂) : B1(0) → Rj ×RN−j = RN

where
V̂ = π̂1 ◦ û and v̂ = π̂2 ◦ û.

Similarly for the blow up maps ûσ of û we can write

ûσ = (V̂σ, v̂σ) : B1(0) → Rj ×RN−j = RN .

Note that by construction,

dι(0,P0) ◦ (π1, 0) = (π̂1 ◦ dι(0,P0), 0). (7)

By the smoothness of the metric G, the fact that exp0 is C∞ close to the
identity map near 0 and (7) we have that

gαβ <
∂(ι ◦ (V, P0))

∂xα
,
∂(ι ◦ (V, P0))

∂xβ
> (x)

= gαβ <
∂(ι ◦ (π1, P0) ◦ u)

∂xα
,
∂(ι ◦ (π1, P0) ◦ u)

∂xβ
> (x)

= (1 +O(|x|))gαβ < ∂(π̂1 ◦ ι ◦ u)
∂xα

,
∂(π̂1 ◦ ι ◦ u)

∂xβ
> (x)

= (1 +O(|x|))gαβ < ∂(π̂1 ◦ exp−1
0 ◦ι ◦ u)

∂xα
,
∂(π̂1 ◦ exp−1

0 ◦ι ◦ u)
∂xβ

> (x)

= (1 +O(|x|))gαβ < ∂V̂

∂xα
,
∂V̂

∂xβ
> (x) (8)

and

gαβ <
∂(ι ◦ u)
∂xα

,
∂(ι ◦ u)
∂xβ

> (x)

= (1 +O(|x|))gαβ < ∂(exp−1
0 ◦ι ◦ u)
∂xα

,
∂(exp−1

0 ◦ι ◦ u)
∂xβ

> (x)

= (1 +O(|x|))gαβ < ∂û

∂xα
,
∂û

∂xβ
> (x). (9)
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Let ûσi
be the sequence converging uniformly in the pull back sense to a

tangent map

u∗ = (V∗, v∗) : B1(0) → (T0(ι(R× Y k−j
2 )), G(u(0))) ↪→ Rj ×RN−j

and GσiEûσi (r) → G(0)Eu∗(r) for r ∈ (0, 1) (cf. Theorem 3.11 [KS2]). In
fact, because of the uniform convergence Gσ to G(0), we have G(0)Eûσi (r) →
G(0)Eu∗(r) for r ∈ (0, 1). Recalling that G(0) is the restriction of the standard
Euclidean metric < ·, · > on RN to T0(ι(R× Y k−j

2 )), we can write this as∫
Br(0)

∑
α,β

gαβ <
∂u∗
∂xα

,
∂u∗
∂xβ

> dµ = lim
i→∞

∫
Br(0)

∑
α,β

gαβ <
∂ûσi

∂xα
,
∂ûσi

∂xβ
> dµ.

(10)
Since ûσi

converges uniformly to u∗ in Br(0), V̂σi
converges uniformly to

V∗ in Br(0) and v̂σi
converges uniformly to v∗. We additionally have that V̂σi

and v̂σi
are uniformly Lipschitz in Br(1) for any r ∈ (0, 1). Thus, the lower

semicontinuity of energy (cf. [KS1] Theorem 1.6.1) implies∫
Br(0)

∑
α,β

gαβ < (
∂V∗
∂xα

, 0), (
∂V∗
∂xβ

, 0) > dµ

≤ lim
i→∞

∫
Br(0)

∑
α,β

gαβ < (
∂V̂σi

∂xα
, 0), (

∂V̂σi

∂xβ
, 0) > dµ (11)

and ∫
Br(0)

∑
α,β

gαβ < (0,
∂v∗
∂xα

), (0,
∂v∗
∂xβ

) > dµ

≤ lim
i→∞

∫
Br(0)

∑
α,β

gαβ < (0,
∂v̂σi

∂xα
), (0,

∂v̂σi

∂xβ
) > dµ. (12)

On the other hand, we can write

<
∂ûσi

∂xα
,
∂ûσi

∂xβ
>=< (

∂V̂σi

∂xα
, 0), (

∂V̂σi

∂xβ
, 0) > + < (0,

∂v̂σi

∂xα
), (0,

∂v̂σi

∂xβ
) >

and

<
∂u∗
∂xα

,
∂u∗
∂xβ

>=< (
∂V∗
∂xα

, 0), (
∂V∗
∂xβ

, 0) > + < (0,
∂v∗
∂xα

), (0,
∂v∗
∂xβ

) > .
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Thus, the above two equalities with (10), (11) and (12) implies that we have
equalities in (11) and (12). The fact that 0 ∈ Sj(u) implies u∗(0) = (V∗(0), 0)
by Lemma 16 and hence

lim
i→∞

∫
Br(0)

∑
α,β

gαβ < (0,
∂v̂σi

∂xα
), (0,

∂v̂σi

∂xβ
) > dµ = 0

and

lim
i→∞

∫
Br(0)

∑
α,β

gαβ < (
∂V̂σi

∂xα
, 0), (

∂V̂σi

∂xβ
, 0) > dµ

= lim
i→∞

∫
Br(0)

∑
α,β

gαβ <
∂ûσi

∂xα
,
∂ûσi

∂xβ
> dµ.

Using the fact that 0 is a Lebesgue point of |∇(ι ◦ (V, P0)|2 and |∇(ι ◦ u))|2
and equations (8) and (9), we see that

|∇(ι ◦ (V, P0))|2(0)

|∇(ι ◦ u)|2(0)
=

lim
i→∞

∫
Br(0)

∑
α,β

gαβ < (
∂V̂σi

∂xα
, 0), (

∂V̂σi

∂xβ
, 0) > dµ

lim
i→∞

∫
Br(0)

∑
α,β

gαβ <
∂ûσi

∂xα
,
∂ûσi

∂xβ
> dµ

= 1.

In the above equality, the fact that the denominator is non-zero follows from
the fact that 0 /∈ S0(u). Therefore, we have shown |∇(ι ◦ (V, P0))|2(0) =
|∇(ι ◦ u)|2(0) for a.e. x ∈ Sj(u), which implies

∂(ι ◦ (V (0), v))

∂xα
(0) = 0, ∀α = 1, . . . , n. (13)

Taking into account that v(0) = P0, we have

d2(vη(0), vη(y)) = η2(y)d2(v(0), v(y)). (14)

Using |∇v|2 and |∇vη|2 to denote the energy density functions of v and vη
with respect to h, we obtain from (14) the following:

(13) ⇒ |∇v|2(0) = 0
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⇒ |∇vη|2(0) = 0 ⇒ ∂(ι ◦ (V (0), vη))

∂xα
(0) = 0, ∀α = 1, . . . , n.

Thus,

|∇(ι ◦ u)|2(x0) = |∇(ι ◦ (V, P0))|2(x0) = |∇(ι ◦ uη)|2(x0),

which proves the Lemma. q.e.d.

We will now derive estimates of the metric G defined on Rj × Y k−j
2 near

(0, P0). Let V = (V 1, . . . , V j) be the standard coordinates on Rj and v =
(vj+1, . . . , vk) the standard coordinates on Rk−j. We combine (V, v) to denote
the standard coordinates on Rk.

Let M be any DM of (Rj × Y k−j
2 , G). Note that M = (Fi, G|Fi

) for Fi
as in (5). By assumption Rj × {P0} is totally geodesic in M and thus there
exist orthonormal coordinates

ψ : U0 ⊂ Rj → Rj × {P0} ⊂M, ψ(0) = (0, P0) (15)

at 0. Let
V 7→ ej+1(V, 0), . . . , V 7→ ek(V, 0)

be vector fields along ψ such that at each V , {el(V, 0)} forms an orthonormal
basis of the normal space to ψ(U0) in M at ψ(V ).

We next identify, by the tubular neighborhood theorem, a neigborhood
U of P0 in M with a disc bundle over ψ(U0), where the fiber over ψ(V ) is
denoted by ΠV . Let GV denote the restriction of G to ΠV . The existence of
normal coordinates of (ΠV , GV ) implies that we can define a diffeomorphism

φV : UV ⊂ Rk−j → φV (UV ) ⊂ ΠV (16)

such that
φV (0) = ψ(V )

and
∇el

em(V, 0) = 0 (17)

where

el(V, v) = φV ∗(
∂

∂vl
)(v) for l = j + 1, . . . , k

17



can be chosen to agree with the previous definition at V = 0. Now define a
diffeomorphism

Φ : U ⊂ Rk → Φ(U) ⊂ U by Φ(V, v) = φV (v)

for U a sufficiently small neighborhood of 0 ∈ Rk. Thus, Φ(V, 0) = ψ(V ) and

el(V, v) = Φ∗(
∂

∂vl
)(V, v) for l = j + 1, . . . , k.

Let

EI(V, v) = Φ∗(
∂

∂V I
)(V, v) for I = 1, . . . , j.

Lemma 18 Let M be a DM in (Rj × Y k−j
2 , G) through (0, P0) and Φ : U ⊂

Rj ×Rk−j →M be the coordinates defined above with Φ(0, 0) = (0, P0). Let

G =

(
G11(V, v) G12(V, v)
G21(V, v) G22(V, v)

)

where

G11(V, v) = (G11(V, v)IJ) G12(V, v) = (G12(V, v)Il)

G21(V, v) = (G21(V, v)lI) G22(V, v) = (G22(V, v)lm)

is the matrix representation of G in the coordinates Φ defined above with
I, J = 1, . . . , j and l,m = j + 1, . . . , k. Then for any (V, 0) ∈ U ,

G11(0, 0) = I and G22(V, 0) = I, (18)

where I is the identity matrix. Furthermore,

|G11(V, v)IJ −G11(V, 0)IJ | ≤ C|v|2, | ∂
∂vlG11(V, v)IJ | ≤ C|v|

|G22(V, v)lm −G22(V, 0)lm| ≤ C|v|2, |Ġ22(V, v)lm| ≤ C|v|
|G12(V, v)Il| < C|v|2, |Ġ12(V, v)Il| ≤ C|v|.

(19)

In the above Ġ is used indicate any derivatives (i.e. ∂
∂V I or ∂

∂vl ) and |v|
is the radial component of the normal coordinates on plane ΠV and hence
invariantly defined. Furthermore,

|v| ≤ Cd(v(x), P0) =: CdP0(x)

where d is the distance function defined on (Y k−j
2 , h) and the constant C

depends only on the C2 norm of the metric G.
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Proof. The equality G11(0, 0) = I follows from the fact that the restric-
tion of Φ to U0 × {0} ∩ U is the orthonormal coordinates ψ of (15). The
equality G22(V, 0) = I for any (V, 0) ∈ U follows from the fact that the re-
striction of Φ to {V } × UV ∩ U is the orthonormal coordinates φV of (16).
This proves (18).

To prove (19), it suffices to prove the following properties:

(i) < EI , el > (V, 0) = 0

(ii) EJ < EI , el > (V, 0) = 0

(iii) em < EI , el > (V, 0) = 0

(iv) em < EI , EJ > (V, 0) = 0

(v) EI < el, em > (V, 0) = 0

(vi) em < el, ep > (V, 0) = 0.

Indeed, (i) follows from the fact that Φ maps {(V, 0) ∈ U} to ψ(U0) and
el(V, 0) is chosen to be normal to ψ(U0), whereas (ii) follows from < EI , el >
(V, 0) ≡ 0. For (iii), first observe that ∇el

em(V, 0) = 0 implies that map
v 7→ Φ(V, v) is geodesic at v = 0, i.e. given any vector η ∈ (Tψ(V )ΠV )⊥,

< ∇ηem, el > (V, 0) = − < ∇emel, η > (V, 0) = 0.

Thus,

em < EI , el > (V, 0) = < ∇emEI , el > (V, 0)+ < EI ,∇emel > (V, 0)

= < ∇EI
em, el > (V, 0) = 0.

(iv) follows from the fact that ψ(U0) is a totally geodesic in M and (v) fol-
lows from < el, em > (V, 0) ≡ δlm. Finally, (vi) follows from ∇el

em(V, 0) ≡ 0.
q.e.d.

If x ∈ R(u), then there exists δ > 0 and a DM M such that u(Bδ(x0)) ⊂
M . We apply Lemma 18 to obtain a coordinates (V, v) ∈ Rj ×Rk−j with G
at (V, v) represented by the matrix(

G11(V, v) G12(V, v)
G21(V, v) G22(V, v)

)
. (20)
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Using these coordinates, interpret ∂V
∂xα as a vector in Rj and ∂v

∂xα and ∂vη

∂xα as
vectors in Rk−j. For any j × j-matrix M11, j × (k − j)-matrix M12 and
(k − j)× (k − j) matrix M22, we write

M11∇V · ∇V, M12∇V · ∇v, M22∇v · ∇v, (21)

M12∇V · ∇vη, M22∇vη · ∇vη (22)

to denote the inner products defined by
n∑

α,β=1

gαβ(
∂V

∂xα
)TM11(

∂V

∂xβ
)

n∑
α,β=1

gαβ(
∂v

∂xα
)TM12(

∂V

∂xβ
),

n∑
α,β=1

gαβ(
∂v

∂xα
)TM22(

∂v

∂xβ
)

n∑
α,β=1

gαβ(
∂vη
∂xα

)TM12(
∂V

∂xβ
),

n∑
α,β=1

gαβ(
∂vη
∂xα

)TM22(
∂vη
∂xβ

)

respectively.
On the other hand, using an isometric embedding

ι : (Rj × Y k−j
2 , G) ↪→ RN ,

we will set the following notation for any fixed x1 ∈ Bσ(x0):

G11(V, v)∇V · ∇V =
∑
αβ

gαβ <
∂(ι ◦ (V, v(x1)))

∂xα
,
∂(ι ◦ (V, v(x1)))

∂xβ
>

G12(V, v)∇V · ∇v =
∑
αβ

gαβ <
∂(ι ◦ (V, v(x1)))

∂xα
,
∂(ι ◦ (V (x1), v))

∂xβ
>

G22(V, v)∇v · ∇v =
∑
αβ

gαβ <
∂(ι ◦ (V (x1), v))

∂xα
,
∂(ι ◦ (V (x1), v))

∂xβ
>

G12(V, vη)∇V · ∇vη =
∑
αβ

gαβ <
∂(ι ◦ (V, vη(x1)))

∂xα
,
∂(ι ◦ (V (x1), vη))

∂xβ
>

G22(V, vη)∇vη · ∇vη =
∑
αβ

gαβ <
∂(ι ◦ (V (x1), vη))

∂xα
,
∂(ι ◦ (V (x1), vη))

∂xβ
> .

We note that for x ∈ R(u), the notation above is consistent with the notation
of (21) replacing M11, M12 and M22 by G11(V, v), G12(V, v) and G22(V, v)
of (20). Same statement for (22) is true with M12 and M22 by replaced by
G12(V, vη) and G22(V, vη) of (20).
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5 Target Variation

In this section, we obtain estimates for the singular component map v of a
harmonic map u = (V, v) : Bσ?(x?) → (Rj × Y2

k−j, G). We start with the
following

Definition 19 We say a neighborhood N of (0, P0) is good if for any DM
M of (Rj × Y k−j

2 , G), there exist coordinates Φ : U ⊂ Rj ×Rk−j →M as in
Lemma 18 such that N ⊂ Φ(U).

Note that by choosing σ? > 0 sufficiently small, we can assure that
u(Bσ?(x?)) is contained in a good neighborhood of u(x?). We will make
the following assumptions for a harmonic map u.

Assumption 20 (i) The image u(Bσ?(x?)) is contained in a good neighbor-
hood of u(x?) = (0, P0).

(ii) The metric G(u(x?)) = H × h on Rj × Y k−2
2 defines an F-connected

complex.

(iii) The set of singular points of u not in Sj(u) is of Hausdorff codimension
at least 2, i.e.

dimH S+
j+1(u) ≤ n− 2.

We now proceed with analyzing u satisfying the assumptions above.

Proposition 21 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. For x0 ∈ Sj(u)∩Bσ?
2

(x?) and σ > 0 such that Bσ(x0) ⊂ Bσ?(x?), let

η ∈ C∞
c (Bσ(x0)) with 0 ≤ η ≤ 1 and vη : Bσ(x0) → Y k−j

2 be as in Lemma 17.
Then

Ev
x0

(σ)− Evη
x0

(σ) ≤ C
∫
Bσ(x0)

ηd2(v, P0) dµ. (23)

Furthermore, the constant C depends only on the C2 norms of the metrics g
and G and the Lipschitz constant of u.

Proof. Since u is harmonic, we have under the notation as in Lemma 17

0 ≥ Eu
x0

(σ)− Euη
x0

(σ)
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=
∫
Bσ(x0)

|∇u|2 dµ−
∫
Bσ(x0)

|∇uη|2 dµ

=
∫
Bσ(x0)

(G11(V, v)∇V · ∇V −G11(V, vη)∇V · ∇V ) dµ

+2
∫
Bσ(x0)

(G12(V, v)∇V · ∇v −G12(V, vη)∇V · ∇vη) dµ

+
∫
Bσ(x0)

(G22(V, v)∇v · ∇v −G22(V, vη)∇vη · ∇vη) dµ

where we have used the notation introduced at the end of Section 4 for the
last inequality. By Lemma 17, |∇u|2 = |∇uη|2 for a.e x ∈ Sj(u). Thus we
can rewrite this inequality as∫

Bσ(x0)\Sj(u)
(G22(V, v)∇v · ∇v −G22(V, vη)∇vη · ∇vη) dµ

≤
∫
Bσ(x0)\Sj(u)

(G11(V, vη)∇V · ∇V −G11(V, v)∇V · ∇V ) dµ

+2
∫
Bσ(x0)\Sj(u)

(G12(V, vη)∇V · ∇vη −G12(V, v)∇V · ∇v) dµ

=: (I) + (II). (24)

We will first prove the estimate

(I) + (II) ≤ C
∫
Bσ(x0)

ηd2
p0
dµ (25)

where C > 0 above and in the rest of the proof is a constant that depends
only on the C2 norms of the metrics g and G and the Lipschitz constant of
u. To prove (25), we will use the fact that V and v are Lipschitz, Lemma 18
on the estimates of the metric and d(vη(x), v(x)) = ηdP0(x).

We first estimate (I). Let x ∈ Bσ(x0) ∩ R(u) and let M be a DM
containing u(Bδ(x)) for some δ > 0. Using the coordinates of Lemma 18 and
the Mean Value Theorem, we can write at x

|(G11(V, vη)−G11(V, v))∇V · ∇V | =

∣∣∣∣∣ ∂∂vG11(V, ξ)

∣∣∣∣∣ ηdP0|∇V · ∇V |

≤ C|ξ|ηdP0 (26)

≤ Cηd2
P0
.
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Since dimH(S+
j+1(u)) ≤ n− 2, this proves

(I) :=
∫
Bσ(x0)\Sj(u)

(G11(V, vη)∇V · ∇V −G11(V, v)∇V · ∇V ) dµ ≤ Cηd2
P0
.

(27)
To estimate (II), define

A+
ε = {x ∈ Bσ(x0) : |v| > ε}.

We claim that

∃εj → 0 such that εjHn−1(∂A+
εj
∩Bσ(x0)) → 0. (28)

If εHn−1(∂A+
ε ∩Bσ(x0)) ≥ δ > 0 for ε < ε0, then we have∫ ε0

0
Hn−1(∂A+

ε ∩Bσ(x0))dε ≥ δ
∫ ε0

0

1

ε
dε = ∞;

on the other hand, the co-area formula and the fact that |v| is Lipschitz imply
that∫ ∞

0
Hn−1(∂A+

ε ∩Bσ(x0))dε =
∫
A+

0

|∇|v||dµ =
∫
Bσ(x0)

|∇|v||dµ <∞,

which is a contradiction and this proves (28).
For x ∈ (Bσ(x0)\A+

εj
) ∩ R(u), let M be a DM containing u(Bδ(x)) for

some δ > 0 and P0. Using the coordinates of Lemma 18, at x we have

|G12(V, v)∇V · ∇v|, |G12(V, vη)∇V · ∇vη| ≤ C|v|2.

Since Hn(S+
j+1) = 0, this implies

(II) := 2
∫
Bσ(x0)\Sj(u)

(G12(V, vη)∇V · ∇vη −G12(V, v)∇V · ∇v) dµ

= 2
∫
A+

εj

(G12(V, vη)∇V · ∇vη −G12(V, v)∇V · ∇v) dµ+O(ε2j).

We can now write

(II) = 2
∫
A+

εj

(G12(V, vη)−G12(V, v))∇V · ∇vη dµ

+2
∫
A+

εj

G12(V, v)(∇V · ∇vη −∇V · ∇v) dµ+O(ε2j)

=: (II)1 + (II)2 +O(ε2j). (29)
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We estimate (II)1 in similar way as (I). Next, we prove the corresponding
inequality for (II)2. We first justify the following formula

∫
A+

ε

G12(V, v)Ii < ∇V I ,∇vi > dµ−
∫
A+

ε

G12(V, vη)Ii < ∇V I ,∇viη > dµ

= −
∫
A+

ε

div(G12(V, v)Ii∇V I)vidµ+
∫
A+

ε

div(G12(V, vη)Ii∇V I)viηdµ

+O(ε2j) (30)

where < ·, · > is the inner product with respect to the domain metric. To
see this, let % > 0 and {Brl(xl) : l = 1, 2, . . .} be a cover of the set S+

j+1(u)
such that

∑∞
l=1 r

n−1
j < %. Let ϕ% be a Lipschitz cut-off function which is zero

in ∪∞l=1Brl(xl) and identically one in Ω\ ∪∞l=1 B2rl(xl) with |∇ϕ%| ≤ 2r−1
l in

Brl(xl). The divergence theorem implies∫
A+

εj

ϕ%G12(V, v)Ii < ∇V I ,∇vi > dµ

= −
∫
A+

εj

ϕ%div(G12(V, v)Ii∇V I)vidµ−
∫
A+

εj

G12(V, v)Ii < ∇ϕ%,∇V I > vidµ

+
∫
∂A+

εj

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ. (31)

Similarly,∫
A+

εj

ϕ%G12(V, vη)Ii < ∇V I ,∇viη > dµ

= −
∫
A+

εj

ϕ%div(G12(V, vη)Ii∇V I)viηdµ−
∫
A+

εj

G12(V, vη)Ii < ∇ϕ%,∇V I > viηdµ

+
∫
∂A+

εj

ϕ%G12(V, vη)Ii
∂V I

∂r
viη dΣ. (32)

For x ∈ A+
ε ∩R(u), let M be the DM such that u(Bδ(x) ⊂M for δ > 0. Then

using coordinates of Lemma 18, we have the estimate |G12(V, v)| < C|v|2.
Thus, using (28), we conclude∣∣∣∣∣
∫
∂A+

εj
∩Bσ(x0)

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ

∣∣∣∣∣ ≤ Cε3jHn−1(∂A+
εj
∩Bσ(x0)) = O(ε2j).
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Thus, we have∫
∂A+

εj

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ

=
∫
A+

εj
∩∂Bσ(x0)

+
∫
∂A+

εj
∩Bσ(x0)

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ

=
∫
A+

εj
∩∂Bσ(x0)

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ +O(ε2j). (33)

Similarly, ∫
∂A+

εj

ϕ%G12(V, vη)Ii
∂V I

∂r
viη dΣ

=
∫
A+

εj
∩∂Bσ(x0)

ϕ%G12(V, vη)Ii
∂V I

∂r
viη dΣ +O(ε2j). (34)

Additionally, note that since v = vη on ∂Bσ(x0),∫
A+

εj
∩∂Bσ(x0)

ϕ%G12(V, v)Ii
∂V I

∂r
vi dΣ =

∫
A+

εj
∩∂Bσ(x0)

ϕ%G12(V, vη)Ii
∂V I

∂r
viη dΣ.

(35)
Furthermore,

∫
A+

εj

G12(V, v)Ii < ∇ϕ%,∇V I > vidµ ≤ C
L∑
l=1

1

rl
Vol(Brl(xl))

≤ C
L∑
l=1

rn−1
l = O(%) (36)

and ∫
A+

εj

G12(V, vη)Ii < ∇ϕ%,∇V I > viηdµ ≤ C
L∑
l=1

1

rl
Vol(Brl(xl))

≤ C
L∑
l=1

rn−1
l = O(%). (37)

Subtracting (32) from (31) and using (33), (34), (35), (36) and (37) and
letting %→ 0, we have justified (30).
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We use (30) to write

(II)2 = 2
∫
A+

εj

G12(V, vη)Ii < ∇V I ,∇viη > −G12(V, vη)Ii < ∇V I ,∇vi > dµ

= −
∫
A+

εj

div(G12(V, v)Ii∇V I)vidµ+
∫
A+

εj

div(G12(V, v)Ii∇V I)vidµ+O(ε2j)

= 2((A) + (B)) +O(ε2j)

where (A) and (B) are defined below. Again using the coordinates of Lemma 18,
we have |Ġ12(V, v)| < C|v| which implies that

(A) :=
∫
A+

εj

(< ∇G12(V, v)Ii,∇V I > viη− < ∇G12(V, v)Ii,∇V I > vi) dµ

≤ C
∫
Bσ(x0)

|v|ηdP0 dµ = C
∫
Bσ(x0)

ηd2
P0
dµ.

Next, using again the estimate |G12(V, v)| < C|v|2 and the harmonic map
equation to bound 4V , we have

(B) :=
∫
A+

εj

(G12(V, vIi4V I viη −G12(V, v)Ii4V Ivi) dµ

≤ C
∫
Bσ(x0)

|v|2ηdP0 dµ = C
∫
Bσ(x0)

ηd2
P0
dµ.

Therefore,

(II)2 = 2((A) + (B)) +O(ε2j)

≤ C
∫
Bσ(x0)

ηd2
p0
dµ+O(ε2j).

Thus, we have shown

(II) = (II)1 + (II)2 +O(ε2j) ≤ C
∫
Bσ(x0)

ηd2
p0
dµ+O(ε2j).

Letting εj → 0, we have completed the proof of the estimate (25). Combining
(24) and (25), we have shown that∫
Bσ(x0)\Sj(u)

(G22(V, v)∇v · ∇v −G22(V, vη)∇vη · ∇vη) dµ ≤ C
∫
Bσ(x0)

ηd2
P0
dµ.

(38)
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Finally, we claim

(III) :=

∣∣∣∣∣
∫
Bσ(x0)\Sj(u)

(|∇v|2 − |∇vη|2) dµ

−
∫
Bσ(x0)\Sj(u)

(G22(V, v)∇v · ∇v −G22(V, vη)∇vη · ∇vη) dµ
∣∣∣∣∣

≤ C
∫
Bσ(x0)

ηd2
P0
dµ (39)

Notice that (39) completes the proof of the Proposition. Indeed, since
|∇v|2 = |∇vη|2 a.e on Sj(u) by Lemma 17, we have

hx0Ev(σ)− hx0Ev(σ) =
∫
Bσ(x0)\Sj(u)

(|∇v|2 − |∇vη|2) dµ

and combining the above with (38) and (39) proves (23) and finishes the
proof.

We now proceed with the proof of (39). For each DM M of Rj × Y k−j
2 ,

consider the coordinates (V, v) of M given in Lemma 18. By (18), the metric
H ×h restricted to M with respect to this coordinate system is given by the
identity matrix I. In particular, this means we can write

|∇v|2 = I ∇v · ∇v and |∇vη|2 = I ∇vη · ∇vη (40)

in Bδ(x0). Here, note that we are using the notation introduced in (21) and
(22).

Let x ∈ Bσ(x0) ∩ R(u) and let M be the DM containing u(Bδ(x)) for
some δ > 0. Using the coordinates of Lemma 18, we have G22(V, 0) = I for
all V and the estimates

|20| ≤ C|v|2 and |2η| ≤ C|vη|2 ≤ C|v|2,

where
20 = I −G22(V, v) and 2η = I −G22(V, vη).

Therefore, using (40), we obtain

| |∇v|2 −G22(V, v)∇v · ∇v| = |20∇v · ∇v| ≤ C|v|2

and
| |∇vη|2 −G22(V, vη)∇vη · ∇vη| = |2η∇vη · ∇vη| ≤ C|v|2
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for x ∈ Bσ(x0) ∩R(u). Since dimH(S+
j+1(u)) ≤ n− 2, we have

(III) =
∣∣∣∣∫
A+

ε

(20∇v · ∇v dµ−2η∇vη · ∇vη) dµ
∣∣∣∣+O(ε2)

and we can write

(III) ≤
∣∣∣∣∫
A+

ε

(20 −2η)∇v · ∇v dµ
∣∣∣∣+ ∣∣∣∣∫

A+
ε

2η(∇v · ∇v −∇v · ∇vη) dµ
∣∣∣∣

+
∣∣∣∣∫
A+

ε

2η(∇v · ∇vη −∇vη · ∇vη) dµ
∣∣∣∣+O(ε2)

= (a) + (b) + (c) +O(ε2).

For x ∈ A+
ε ∩R(u), we have by the mean value theorem exactly as in (26)

|20∇v · ∇v −2η∇v · ∇v| = |(G22(V, v)−G22(V, vη))∇v · ∇v|
≤ C|v|ηdP0 .

Hence
(a) ≤ C

∫
A+

ε

ηd2
P0
dµ.

Next, we have the estimates |∇2η| ≤ C|v| and |2η| ≤ C|v|2, hence we can
use the divergence theorem (which is justified in the same way as previously)
to write

(b) =
∣∣∣∣∫
A+

ε

div(2η∇v)(v − vη) dµ
∣∣∣∣

≤
∣∣∣∣∫
A+

ε

∇2η · ∇v (v − vη) dµ
∣∣∣∣+ ∣∣∣∣∫

A+
ε

2η4v(v − vη) dµ
∣∣∣∣

≤ C
∫
A+

ε

ηd2
P0
dµ.

Finally, (c) can be estimated exactly as (b). We let ε → 0 and we obtain
(39). q.e.d.

Remark. Notice that the proof of the previous proposition is significantly
complicated by the fact that we need to estimate the right hand side in terms
of ηd2

P0
. If we were willing to replace η by 1, which is the case in the follow-

ing Proposition, then for example the application of the divergence theorem
would be unnecessary.
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Proposition 22 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. For x0 ∈ Sj(u)∩Bσ?
2

(x?) and σ > 0 such that Bσ(x0) ⊂ Bσ?(x?), let

w : Bσ(x0) → (Y k−j
2 , h) be a harmonic map with w|∂Bσ(x0) = v|∂Bσ(x0). Then

Ev
x0

(σ)− Ew
x0

(σ) ≤ C
∫
Bσ(x0)

(d2(v, P0) + d2(w, v)) dµ. (41)

Furthermore, the constant C depends only on the C2 norms of the metrics g
and G and the Lipschitz constants of u and w.

Proof. By [GS] Theorem 6.4, we have dimH S(w) ≤ n− 2. Noting that
|∇v|2(x) = 0 for a.e. x ∈ Sj(u) by Lemma 17, we can write

Ev
x0

(σ)− Ew
x0

(σ) ≤
∫
Bx0 (σ)\Sj(u)

(|∇v|2 − |∇w|2) dµ.

With this, we can follow the the proof of Proposition 21 with w replacing vη.
The only difference here is that we do not use the equality d(vη(x), v(x)) =
ηdP0(x). See also Remark preceding this Proposition. Therefore, we obtain
d2(w, v) in the integral on the right hand side of (41). q.e.d.

Next we will prove the following auxiliary

Lemma 23 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, G) satisfy Assump-

tion 20. For x0 ∈ Sj(u)∩Bσ?
2

(x?) and σ > 0 such that Bσ(x0) ⊂ Bσ?(x?), let

w : Bσ(x0) → (Y k−j
2 , h) be a harmonic map with w|∂Bσ(x0) = v|∂Bσ(x0). Then,

∫
Bσ(x0)

d2(v, P0) + d2(w,P0) dµ ≤ C
(
σ Ivx0

(σ) + σ2 Ev
x0

(σ)
)
. (42)

Furthermore, the constant C > 0 depends only on the C2 norm of the metric
g.

Proof. By the usual monotonicity formula for harmonic maps (cf. [GS],
last formula on p. 195), there exists a constant C > 0 depending on the C2

norm of the metric g such that∫
Bσ(x0)

d2(w,P0) dµ ≤ Cσ
∫
∂Bσ(x0)

d2(w,P0) dΣ = Cσ Ivx0
(σ). (43)
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Let w1/2 : Bσ → Y2 be the map defined by setting w1/2(x) to be the midpoint
of the geodesic between v(x) and w(x). Then by (2.2iv) of [KS2], we have

2 E
w1/2
x0 ≤ Ev

x0
+ Ew

x0
− 1

2

∫
Bσ(x0)

|∇d(v, w)|2dµ.

The harmonicity of w implies Ew
x0
≤ E

w1/2
x0 which in turn implies∫

Bσ(x0)
|∇d(v, w)|2dµ ≤ Ev

x0
− E

w1/2
x0 ≤ Ev

x0
.

By the Poincare Inequality, we obtain∫
Bσ(x0)

d2(v, w)dµ ≤ Cσ2
∫
Bσ(x0)

|∇d(v, w)|2dµ ≤ Cσ2 Ev
x0
. (44)

Combining (43) and (44) with the triangle inequality∫
Bσ(x0)

d2(v, P0) dµ ≤ 2
∫
Bσ(x0)

d2(w,P0) dµ+ 2
∫
Bσ(x0)

d2(v, w) dµ

completes the proof. q.e.d.

The next proposition is the main result of the section. It is the analogue
of the target variation formula (2.2) of [GS].

Proposition 24 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. For x0 ∈ Sj(u) ∩ Bσ?
2

(x?) and σ > 0 such that Bσ(x0) ⊂ Bσ?(x?),
there exists C > 0 such that

2 Ev
x0

(σ) ≤
∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dµ+ C

(
σIvx0

(σ) + σ2 Ev
x0

(σ)
)
.

Furthermore the constant C depends only on the C2 norms of the metrics g
and G and the Lipschitz constant of u.

Proof. For a non-negative smooth function η ∈ C∞
c (Bσ(x0)) with 0 ≤

η ≤ 1 and t sufficiently small, let vtη : Ω → Y2 as in Lemma 17 with η
replaced by tη. From [GS] Section 2,

Evtη
x0

(σ) ≤
∫
Bσ(x0)

(1− tη)2|∇v|2dµ− t
∫
Bσ(x0)

∇η · ∇d2(vtη(x), P0)dµ+ 0(t2).
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Hence rearranging terms, dividing by t and letting t→ 0, we obtain

2
∫
Bσ(x0)

η|∇v|2dµ (45)

≤ −
∫
Bσ(x0)

∇η · ∇d2(v(x), P0) dµ+ lim inf
t→0

Ev
x0

(σ)− Evtη
x0

(σ)

t
.

Replacing η by tη in Proposition 21, dividing by t and taking lim inf we
obtain

lim inf
t→0

Ev
x0

(σ)− Evtη
x0

(σ)

t
≤ C

∫
Bσ(x0)

ηd2(v(x), P0) dµ. (46)

Combining this with (45) and letting η approximate the characteristic func-
tion of Bσ(x0), we obtain

2 Ev
x0

(σ) ≤
∫
∂Bσ(x0)

∂

∂r
d2(v(x), P0) dΣ + C

∫
Bσ(x0)

d2(v(x), P0) dµ.

Now Lemma 23 completes the proof. q.e.d.

6 Order Function

We continue with the analysis of the singular component map and start with
the following Proposition on the lower bound of the order function.

Proposition 25 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. Then for any ε0 > 0, there exists R0 > 0 such that

1− ε0 ≤
σ Ev

x0
(σ)

Ivx0
(σ)

, ∀x0 ∈ Sj(u) ∩Bσ?
2

(x?) and ∀σ ∈ (0, R0]. (47)

Proof. If (47) is not true, then there exist a sequence xi ∈ Sj(u) and
ri → 0 such that

ri E
v
xi

(ri)

Ivxi
(ri)

< 1− ε0. (48)
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Note here that xi ∈ Sj(u) implies v(xi) = P0 for all i. For each xi, use
normal coordinates to identify a ri-ball about xi with (Bri(0), gxi

) where
Bri(0) ⊂ Rn. We define the restriction maps

iv : (Bri(0), gxi
) → Y k−j

2 , iv = v|Bri (0)

and the harmonic maps

iw : (Bri(0), gxi
) → Y2

k−j with iw|∂Bri (0)
= iv|∂Bri (0)

with respect to the metric h. Let

νi =

(
I iv
0 (ri)

rn−1
i

)1/2

. (49)

Let gi(x) = gxi
(rix) be the metric given on B1(0) and define the rescaled

maps
vi, wi : (B1(0), gi) → (Y2

k−j, h)

by setting
vi(x) = ν−1

i iv(rix) and wi(x) = ν−1
i iw(rix)

The normalization by νi implies that

Ivi
0 (1) = Iwi

0 (1) = 1.

In particular, (48) guarantees that

Ewi
0 (1) ≤ Evi

0 (1) =
Evi

0 (1)

Ivi
0 (1)

≤ 1− ε0. (50)

Therefore, {wi} is a sequence of harmonic maps with Iwi
0 (1) = 1 and uni-

formly bounded energy. For any r ∈ (0, 1), the Lipschitz constant for {wi}
in Br(0) depends on the energy bound and r and is independent of i (cf.
Theorem 2.4.6 [KS1]). By Arzela-Ascoli, there exists a subsequence of {wi}
(which we still denote by {wi} by an abuse of notation) converging uniformly
in the pull-back sense on every compact set to a map

v0 : (B1(0), δ) → (Y k−j
2 , h)
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where δ is the standard Euclidean metric on B1(0) and

Ev0
0 (σ) = lim

i→∞
Ewi

0 (σ), ∀σ ∈ (0, 1).

The map v0 is non-constant since Iwi
0 (1) = 1 by the L2-trace theorem

(cf. Theorem 1.12.2 of [KS1]). The fact that v0 is energy minimizing on
every compact subset of B1(0) immediately implies v0 is energy minimizing
on B1(0) by the same argument as in Lemma 11. Since∫

∂B1(0)
d2(vi, P0)dµ = 1 and Evi

0 (1) ≤ (1− ε0),

Theorems 1.13 and 1.12.2 of [KS1] imply that the sequences {vi} (resp.
{vi|∂B1(0)}) converge in L2 to a map which we claim to be v0 (resp. v0|∂B1(0)).
Indeed we will now show that∫

B1(0)
d2(vi, v0) dµ→ 0. (51)

To see this, let iv 1
2

= 1
2 iv + 1

2 iw. Then

∫
Bri (0)

|∇d(iv,iw)|2 dµ

≤ Eiv
0 (ri) + Eiw

0 (ri)− 2 E
iv 1

2
0 (ri) (by [KS1](2.2iv))

≤ Eiv
0 (ri)− Eiw

0 (ri).

Thus, Proposition 22, Lemma 23 and (48) gives us∫
Bri (0)

|∇d(iv,iw)|2 dµ ≤ Cri I iv
0 (ri).

Using Poincare inequality
∫
Bri (0)

d2(iv,iw) dµ ≤ Cr2
i

∫
Bri (0)

|∇d(iv,iw)|2dµ,
we obtain ∫

Bri (0)
d2(iv,iw) dµ ≤ Cr3

i I
iv
0 (ri).

Using a change of variables φi : B1(0) → Bri(0) defined by φi(x) = rix, we
obtain ∫

B1(0)
d2(iv ◦ φi, iw ◦ φi) dµ ≤ Cr2

i I
iv◦φi
0 (1). (52)
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The loss of ri on the first term on the right-hand side of (52) after the
change of variables comes from the fact that I iv is an expression involving
(n− 1)-dimensional integral compared to the left-hand side of (52) which is
an expression involving a n-dimensional integral. Now multiply both sides
by ν−2

i to obtain ∫
B1(0)

d2(vi, wi) dµ ≤ Cr2
i I

vi
0 (1) = Cr2

i .

Therefore as i→∞,∫
B1(0)

d2(vi, v0) dµ ≤ 2
∫
B1(0)

d2(vi, wi) dµ+ 2
∫
B1(0)

d2(wi, v0) dµ→ 0

and this proves (51).
Using the facts that the order of a harmonic map is ≥ 1, the L2-trace

theorem (cf. Theorem 1.12.2 [KS1]) which implies Iv00 (1) = limi→∞ Ivi
0 (1)

and the lower semicontinuity of the energy Ev0
0 (1) ≤ lim infi→∞ Evi

0 (1), we
obtain

1 ≤ Ev0
0 (1)

Iv00 (1)
≤ lim inf

i→0

Evi
0 (1)

Ivi
0 (1)

≤ 1− ε0.

This is a contradiction. q.e.d.

The next Lemma is the analogue of the domain variation formula (2.3)
of [GS]

Lemma 26 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, G) satisfy Assump-

tion 20. There exists R0 > 0 such that for x0 ∈ Sj(u) ∩ Bσ?
2

(x?) and
σ ∈ (0, R0), we have

(2− n+O(σ2))Ev
x0

(σ) + σ
∫
∂Bσ(x0)

|∇v|2dΣ− 2σ
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dµ ≥ 0.

Proof. By (46) and Lemma 23, we obtain

lim inf
t→0

Ev
x0

(σ)− Evtη
x0

(σ)

t
≤ C

∫
Bσ(x0)

ηd2(v, P0) dµ

≤ C
(
σ Ivx0

(σ) + σ2 Ev
x0

(σ)
)
.
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Combining with Proposition 25, for σ < R0 we have

lim inf
t→0

Ev
x0

(σ)− Evtη
x0

(σ)

t
≤ Cσ2 Ev

x0
(σ).

Now as in [GS] p.192-193, we also have

lim
t→0

Evtη
x0

(σ)− Ev
x0

(σ)

t

= (2− n+O(σ2))Ev
x0

(σ) + σ
∫
∂Bσ(x0)

|∇v|2dΣ− 2σ
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dµ,

which combined with the previous inequality implies the Lemma. q.e.d.

The next result is to prove the following existence property of the order
for the singular component of a harmonic map.

Proposition 27 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. For x0 ∈ Sj(u) ∩ Bσ?
2

(x?) and 0 < σ < σ0 =: sup{σ : Bσ(x0) ⊂
Bσ?(x?)}, define

Ordv(x0, σ) :=
σ Ev

x0
(σ)

Ivx0
(σ)

.

Then
Ordv(x0) := lim

σ→0
Ordv(x0, σ) exists.

In fact, there exist constants C > 0, C1 > 0 and R0 > 0 such that for any
x0 ∈ Sj(u)∩Bσ?

2
(x?), there is a function σ 7→ Fx0(σ) with the properties that

Ivx0
(σ) ≤ Fx0(σ) ≤ Ivx0

(σ)eC1σ2

(53)

and

σ 7→ eCσ
2 σ Ev

x0
(σ)

Fx0(σ)
is non-decreasing in (0, R0). (54)

Proof. By Proposition 25, there exists R0 > 0 such that

1

2
≤
σ Ev

x0
(σ)

Ivx0
(σ)

, ∀σ ∈ (0, R0) (55)
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for any x0 ∈ Sj(x0). Now fix x0 ∈ Sj(x0). For notational simplicity, let
I(σ) = Ivx0

(σ) and E(σ) = Ev
x0

(σ). Proposition 24 and (55) then imply that

2E(σ) ≤
∫
∂Bσ(x0)

∂

∂r
d2(v, P0) dµ+ Cσ2E(σ), σ ∈ (0, R0) (56)

for some constant C independent of x0. By Lemma 26 and the identity

I ′(σ) =
∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ +

n− 1

σ
I(σ) +O(σ)I(σ) (57)

(cf. [GS] p.193), we obtain

I ′(σ)

I(σ)
− E ′(σ)

E(σ)
− 1

σ
(58)

=

E(σ)
∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ− 2I(σ)

∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ


E(σ)I(σ)

+O(σ).

The derivation of (58) is exactly as in [GS]. We note that the O(σ) term
is only dependent on the domain metric and can be bounded by a constant
independent of x0 ∈ Ω. Combining (56) and (57), we obtain

E(σ)
∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ− 2I(σ)

∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 1

2

(∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ

)2

+ Cσ2E(σ)

(∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ

)

−2I(σ)
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 1

2

(∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ

)2

− 2I(σ)
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

+Cσ2E(σ)
(
I ′(σ)− n− 1

σ
I(σ) + CσI(σ)

)
. (59)

Since ∣∣∣∣∣ ∂∂rd(v, P0)

∣∣∣∣∣
2

≤
∣∣∣∣∣∂v∂r

∣∣∣∣∣
2

,
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we have

1

2

(∫
∂Bσ(x0)

∂

∂r
d2(v, P0)dΣ

)2

− 2I(σ)
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

= 2

(∫
∂Bσ(x0)

d(v, P0)
∂

∂r
d(v, P0)dΣ

)2

− 2I(σ)
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 2I(σ)

∫
∂Bσ(x0)

∣∣∣∣∣ ∂∂rd(v, P0)

∣∣∣∣∣
2

dΣ

− 2I(σ)
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 0. (60)

Thus, by combining (58) with (59) and (60), we obtain

0 ≤ E ′(σ)

E(σ)
+

1

σ
− (1− Cσ2)

I ′(σ)

I(σ)
+ Cσ, for a.e. σ ∈ (0, ρ0) (61)

for C > 0 sufficiently large. Here we note that C depends only on the
domain and the target metric and hence can be chosen independently of x0.
Inequality (61) is (15) in [Me]. If we set

Fx0(σ) = I(σ) exp

(
C
∫ σ0

σ
s2 d

ds
log I(s)ds

)
,

then we can deduce that Fx0(σ) satisfies (53) and (54) from the proof of
Proposition 3.1 of [Me]. Furthermore, C1 > 0 can be chosen independently
of x0. q.e.d.

We can now define blow up maps and a tangent map of the singular
component map v of u. Let u = (V, v) : Bσ?(x?) → (Rj × Y2

k−j, G) satisfy
Assumption 20. Fix x0 ∈ Sj(u) ∩ Bσ?

2
(x?) and use normal coordinates at

x0 = 0. Let
vi : (B1(0), gi) → (Y k−j

2 , h)

be defined as in Proposition 25 with xi = x0 for all i. By construction, we
have Ivi

0 (1) = 1. By Proposition 27,

Evi
0 (1) =

Evi
0 (1)

Ivi
0 (1)

=
riE

v
0 (ri)

Iv0 (ri)
≤ Ordv(0) + 1
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for i sufficiently large. Replacing inequality (50) by the above inequality,
we can apply the argument in the proof of Proposition 25 to assert the
existence of a sequence of {vi} (resp {vi|∂B1(0)}) converging in L2 to a map

v0 : B1(0) → (Y k−j
2 , h) (resp. v0|∂B1(0)). Therefore, we have

Ev0
0 (r) ≤ lim inf

i→∞
Evi

0 (r), r ∈ (0, 1] (62)

by the lower semicontinuity of energy (cf. Theorem 1.6 [KS1]) and

Iv00 (1) = lim
i→∞

Ivi
0 (1), r ∈ (0, 1] (63)

by the L2 trace theorem (cf. Theorem 1.12.2 [KS1]). Furthermore, v0 is a
harmonic map (since it is the limit of harmonic maps {wi}).

Definition 28 The maps vi and v0 above are called blow-up maps and a
tangent map of v at x0.

The following results are corollaries of Proposition 27.

Corollary 29 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, G) satisfy Assump-

tion 20. If v ≡ P0 on any open subset of Bσ?
2

(x?), then v ≡ P0 in Bσ?
2

(x?).

Proof. If v is not constant in Bσ?
2

(x?) but identically equal to P0 on
an open subset of Bσ?

2
(x?), then there exists a ball B ⊂ Bσ?

2
(x?) such that

v ≡ P0 in the interior of B, but for some x0 ∈ ∂B, v is not constant in any
neighborhood of x0. Let v0 : B1(0) → (Y k−j

2 , h) be the tangent map of v
at x0. Then v0 is identically constant on half of B1(0) and this contradicts
Proposition 3.4 [GS]. q.e.d.

Corollary 30 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, G) satisfy Assump-

tion 20. Then, there exists A > 0 such that for x0 ∈ Sj(u) ∩ Bσ?
2

(x?), we
have

Ordv(x0) ≤ A.

Proof. Since∫ σ0

σ
s2 d

ds
log I(s)ds = σ2

0 log I(σ0)− σ2 log I(σ)− 2
∫ σ0

σ
s log I(s)ds,
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the map x0 7→ Fx0(σ) is a continuous map. Since Fx0(σ) 6= 0 by Corollary 29,

the map x0 7→
σEv

x0
(σ)

Fx0 (σ)
is also continuous. Thus, the result follows from the

fact that a non-increasing limit of continuous functions is upper semicontin-
uous. q.e.d.

Corollary 31 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, G) satisfy As-

sumption 20. Then, there exist C > 0 and R0 > 0 such that for any
x0 ∈ Sj(u) ∩Bσ?

2
(x?), we have

σ 7→ eCσ
2 Ivx0

(σ)

σn−1+2α
and σ 7→ eCσ

2 Ev
x0

(σ)

σn−2+2α

is monotone non-decreasing in (0, R0), where α = Ordv(x0).

Proof. Let I(σ) = Ivx0
(σ), E(σ) = Ev

x0
(σ) and F (σ) = Fx0(σ). By

Propositions 24 and 27,

e−Cσ
2

αI(σ) ≤ e−Cσ
2

αF (σ) ≤ σE(σ)

≤ σ

2

(∫
∂Bσ(x0)

∂

∂r
d2(v, P0) + CσI(σ)

)

≤ 1

2− Cσ2

(
σI ′(σ)− (n− 1)I(σ) + Cσ2I(σ)

)
,

for some C > 0 (which depends on the constants in Propositions 24 and 27
and can be chosen independently of x0 ∈ Bσ?

2
(x?)). Thus, by adjusting C

and absorbing all the error in the Cσ term we have

I ′(σ)

I(σ)
≥ n− 1 + 2α

σ
− Cσ

for σ > 0 sufficiently small. Similarly, using inequality (61), we have

E ′(σ)

E(σ)
≥ n− 2 + 2α

σ
− Cσ

and this immediately implies the assertion of the Corollary. q.e.d.
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7 The Gap Property of the Order

We start by stating the ε-regularity theorem of [DM].

Theorem 32 Let Y be locally compact Riemannian simplicial complex and
assume Y0 is a totally geodesic subcomplex of Y . Fix P ∈ Y0 and assume
that TP1Y0 is essentially regular for P1 ∈ Y0 close to P . Let

l0 : Br0(0) ⊂ Rn → TPY

be an instrinsically homogeneous degree 1 map effectively contained in TPY0

and l0(0) = OP , the origin of TPY . Let Ω be a smooth Riemannian domain,
u : Ω → Y a harmonic map, Ω0 a compactly contained subset of Ω and
x0 ∈ Ω0 such that u(x0) = P and u is of order 1 at x0. There exist σ0 > 0
and δ0 > 0 such that if

1

σn

∫
Bσ(0)

d(exp−1
P ◦u ◦ expx0

(x), l0(x)) dµ < δ0, ∀σ ∈ (0, σ0)

then u(Bσ′(x0)) ⊂ Y0 for some σ′ > 0. The constants σ0 and δ0 depend only
on Ω0, Ω, Y0 and the total energy Eu of u.

For the definitions of effectively contained and essentially regular, we refer
to [GS] or [DM]. This immediately implies the following

Corollary 33 Let Ω be an n-dimensional smooth Riemannian domain, Y an
m-dimensional locally compact Riemannian simplicial complex, u : Ω → Y a
harmonic map and x0 ∈ Ω with Ord(x0) = 1. There exists a totally geodesic
subcomplex Y0 which is isometric to the twisted product (Rm × Y k−m

2 , G) for
some integer m with 1 ≤ m ≤ min{n, k} and some DM complex Y k−m

2 of
dimension k −m such that u(Bσ′(x0)) ⊂ Y0 for some σ′ > 0.

Proof. By Lemma 6.2 of [GS] the tangent map u∗ at x0 is effectively
contained into a subcomplex Rm × Xk−m

0 ⊂ TPY, P = u(x0). Apply Theo-
rem 32 to Y0 = expP (Rm ×Xk−m

0 ) and l0 = u∗. q.e.d.

Recall that by the ε-gap Theorem of [GS], given any harmonic map w :
B1(0) ⊂ Rn → (Y2, h) with w(0) = P0, either

Ordw(0) = 1 or Ordw(0) ≥ 1 + ε0 (64)

where ε0 > 0 depends only on h. We will now prove that this gap property
holds for the singular component map of a harmonic map.
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Proposition 34 Let u = (V, v) : Bσ?(x?) → (Rj×Y2
k−j, G) satisfy Assump-

tion 20. There exists ε0 > 0 such that

Ordv(x0) ∈ [1 + ε0,∞), ∀x0 ∈ Sj(u).

Proof. Let {vi} and v0 be blow up maps and a tangent map of v at
x0 = 0 of Definition 28. Thus, we obtain for any σ ∈ (0, 1],

Ordv0(0) ≤ σ Ev0
0 (σ)

Iv00 (σ)
(Monotonicity Formula, [GS] equation (2.5))

≤ lim inf
i→∞

σ Evi
0 (σ)

Ivi
0 (σ)

(by (62) and (63))

= lim inf
i→∞

riσ E
v
0 (riσ)

Iv0 (riσ)

= Ordv(0)

If Ordv0(0) = 1 the tangent map v0∗ of v0 at 0 is a degree 1, homogeneous
map. Hence v0∗ maps into a flat F of Y k−j

2 (cf. Proposition 3.1 [GS]).
Let Y ′

2 be the union of all (k − j)-flats containing F . Then map v0∗ is
homogeneous of degree 1 and effectively contained in Y ′

2 and we can write
Y ′

2 = Rl×Y k−j−l
3 where l is the dimension of F and Y k−j−l

3 is a F-connected
complex of dimension k− j− l (cf. Lemma 6.2 [GS]). If we let U∗ = (u∗, v0∗)
where u∗ is the tangent map of u at x0, then U∗ a homogeneous, degree 1
map is effectively contained in Rj×Rl×Y k−j−l

3 . Note that u∗ maps into the
first component of Rj × Y k−j

2 . Therefore, given any δ0 > 0, we can choose i
sufficiently large such that

1

rni

∫
Bri (0)

d(V, u∗) dµ <
δ0
2
,

and

1

rni

∫
Bri (0)

d(v, v0∗) dµ ≤ 1

rni

∫
Bri (0)

(d(v, v0) + d(v0, v0∗)) dµ

≤ νi

∫
B1(0)

di(vi, v0) dµ+
1

rni

∫
Bri (0)

d(v0, v0∗) dµ

≤ νi

∫
B1(0)

di(vi, v0) dµ+
1

rni

∫
Bri (0)

d(v0, v0∗) dµ

<
δ0
2
.
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Thus,

1

rni

∫
Bri (x0)

d(u, U∗) dµ ≤
1

rni

∫
Bri (x0)

d(V, u∗) dµ+
1

rni

∫
Bri (x0)

d(v, v0∗) dµ < δ0.

By Corollary 33, there exists σ > 0 such that

u(Bσ(x0)) ⊂ Rj+l × Y k−j−l
3

and this contradicts that x0 ∈ Sj(u). Thus, Ordv0(0) > 1. By (64), there
exists ε0 > 0 such that 1 + ε0 ≤ Ordv0(0) ≤ Ordv(x0). q.e.d.

8 Proof of the Main Theorem

By induction it suffices to show that if u = (V, v) : Bσ?(x?) → (Rj×Y k−j
2 , G)

is a harmonic map with its image contained in a good neighborhood of
u(x?) = (0, P0), G(u(x?)) = H × h on Rj × Y k−j

2 defines a F -connected
complex and dimHS+

j+1(u) ≤ n− 2, then dimH(Sj(u)) ≤ n− 2.

Following [GS] we define the rough outer Hausdorff measure Ĥs(·) by

Ĥs(S) = inf

{ ∞∑
l=1

rsl : all coverings {Brl(xl)}∞l=1 of S by open balls

}
.

Ĥs is clearly an outer measure which is not precisely the Hausdorff measure
Hs. On the other hand, for any set S the Hausdorff dimension is given by

dimH(S) = inf{s : Hs(S) = 0} = inf{s : Ĥs(S) = 0}.

Now assume by contradiction that dimH(Sj(u)) > n− 2. By [Fe] 2.10.19,
there exists s0 > n− 2, x0 ∈ Sj(u) and a sequence σi → 0 such that

lim
i→∞

σ−s0i Ĥs0(Sj(u) ∩Bσi
2
(x0)) = lim sup

σ→0
σ−s0Ĥs0(Sj(u) ∩Bσ

2
(x0))

≥ 2−s0 . (65)

Let {vi} and v0 be blow up maps and tangent map of v at x0. For
i = 1, 2, . . ., define

Si = {x ∈ B 1
2
(0) : x ∈ Sj(vi)}
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and
S0 = {x ∈ B 1

2
(0) ∩R(u) : |∇v0| = 0} ∪ S(v0).

By (65), we have
lim
i→∞

Ĥs0(Si) ≥ 2−s0 . (66)

We next claim that

if xi ∈ Si and xi → x, then x ∈ S0. (67)

Since xi → x, gi → g(0) uniformly, we obtain by the trace theory (cf. Theo-
rem 1.12.2 [KS1]) that∫

∂Br(x)
d2(v0, P0) ds = lim

i→∞

∫
∂Br(xi)

d2(vi, P0) ds.

Let x̄i ∈ Sj(u) be the point which corresponds to xi ∈ Sj(vi) ∩ B1(0) in the
construction of the the blow up map vi. Then with αi = Ordv(x̄i), we have
by Corollary 31 and with A as in Corollary 30

Ivi
xi

(r)

rn+1+2ε0
≤

Ivi
xi

(r)

rn−1+2αi
≤ c

Ivi
xi

(r0)

rn−1+2αi
0

≤ c
Ivi
xi

(r0)

rn−1+2A
0

.

Taking the limit as i→∞, we obtain

Iv0x (r)

rn+1+2ε0
≤ c

Iv0x (r0)

rn−1+2A
0

.

In order to prove (67) notice that if x ∈ R(v0), then

ωn|∇v0|2(x) = lim
r→0

Iv0x (r)

rn+1
≤ c lim

r→0

Iv0x (r0)

rn−1+2A
0

r2ε0 = 0

and this proves (67).
We now claim that for any r ∈ (0, 1) and any s > 0,

Ĥs(S0) ≥ lim sup
i→0

Ĥs(Si). (68)

To prove (68), note that for a given ε1 > 0, choose a covering {Brl(xl)}Nl=1 of
S0 such that

Ĥs(S0) + ε1 ≥
N∑
l=1

rsl .
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Note here that it is enough to consider finite coverings since S0 is closed by
Lemma 15 and hence compact. By (67), {Bri(xi)}Ni=1 is a covering of Si for
i sufficiently large. Hence, for i sufficiently large,

Ĥs(S0) + ε1 ≥
N∑
j=1

rsj ≥ Ĥs(Si).

Since ε1 is arbitrary, this proves (68).
In particular, let s = s0 > n− 2 in (68) and combine with (66) to obtain

Ĥs0(S0) ≥ lim sup
i→0

Ĥs0(Si) ≥ 2−s0 .

By Theorem 6.4 [GS], we have that dimH(S(v0)) ≤ n−2. Furthermore, since
v0 maps a neighborhood of x ∈ R(u) into Euclidean space, dimH{x ∈ R(u) :
|∇v0|2(x) = 0} ≤ n− 2. Thus, dimH(S0) ≤ n− 2 which is a contradiction.

Theorems 2 and 3 which improve Propositions 27 and 34 and Corollary 4
of the introduction are now immediate consequences of the Theorem 1.
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